X^4-2x^2-3=0
Jag fattar inte på slutet hur roten ur -1 kan bli -3?
Här är två fel:
- Du glömde
- Du skrev istället för .
Ett spaminlägg raderat. /Mod
Yngve skrev:Här är två fel:
- Du glömde
- Du skrev istället för .
jag fattar inte ska man ALLTID skriva efter man dragit roten ur ett tal? så det ska stå 2? när ska man ha kvar rottecken är det när det är ett tal som inte går dra roten ur tex ? då har man kvar rottecken? ska man alltid ha tex efter man tagit roten ur eller när ska man ha kvar rottecken och plus minustecken kvar?
mattegeni1 skrev:
jag fattar inte ska man ALLTID skriva efter man dragit roten ur ett tal? så det ska stå 2? när ska man ha kvar rottecken är det när det är ett tal som inte går dra roten ur tex ? då har man kvar rottecken? ska man alltid ha tex efter man tagit roten ur eller när ska man ha kvar rottecken och plus minustecken kvar?
Se svar i din andra tråd.
Yngve skrev:mattegeni1 skrev:jag fattar inte ska man ALLTID skriva efter man dragit roten ur ett tal? så det ska stå 2? när ska man ha kvar rottecken är det när det är ett tal som inte går dra roten ur tex ? då har man kvar rottecken? ska man alltid ha tex efter man tagit roten ur eller när ska man ha kvar rottecken och plus minustecken kvar?
Se svar i din andra tråd.
Jag kommer inte längre fram hur tar jag roten ur ett negativt tal?
Det går om vi använder komplexa tal.
Känner du till dem?
Yngve skrev:Det går om vi använder komplexa tal.
Känner du till dem?
har läst men förstår inte snälla kan du dra ett exempel på -1 ? hur man gör?
Läs det som yngve länkar till. Säg till om det är något av det som du inte förstår.
mattegeni1 skrev:
har läst men förstår inte snälla kan du dra ett exempel på -1 ? hur man gör?
Det komplexa talet har den egenskapen att .
Det betyder att
Med hjälp av det kan vi beräkna roten ur alla negativa tal, t.ex:
EDIT - rättat skrivfel
.
.
Yngve skrev:mattegeni1 skrev:har läst men förstår inte snälla kan du dra ett exempel på -1 ? hur man gör?
Det komplexa talet har den egenskapen att .
Det betyder att
Med hjälp av det kan vi beräkna roten ur alla negativa tal, t.ex:
.
.
=2 dvs 2x2=4 blir det inte 2i ?
och varför är rottecken kvar för 7 men inte för 4?
Litet misstag bara, visst ska det bli 2i.
Det andra fick du svar på här: https://www.pluggakuten.se/trad/regler-for-kvadratkomplettering/
mattegeni1 skrev:
=2 dvs 2x2=4 blir det inte 2i ?
Tack, bra fångat!
Det var ett slarvfel från min sida, jag har korrigerat det nu
Jag har försökt lösa den nu får bara fram tre lösningar vad ska fjärde lösningen vara?
sen i facit står det bara två lösningar x1=3 och x2=-3 jag blir förvirrad på pluggakuten skrev flera lärare att man ska svara med 4 lösningar men i facit står det 2? Hur ska jag svara och hur får jag fram fjärde lösning?
mattegeni1 skrev:Jag har försökt lösa den nu får bara fram tre lösningar vad ska fjärde lösningen vara?
sen i facit står det bara två lösningar x1=3 och x2=-3 jag blir förvirrad på pluggakuten skrev flera lärare att man ska svara med 4 lösningar men i facit står det 2? Hur ska jag svara och hur får jag fram fjärde lösning?
Det ska bara finnas 2 lösningar, x1 = och x2 =-. Det du har skrivit i x3 är ett imaginärt tal vilket ska inte tas med i svaret. När man svarar ska man endast svara med reella lösningar.
Då vi har t=-1 ger negativt tal under rottecken så saknas det lösningar. Vi har då bara 2 lösningar på x.
Det finns fyra lösningar, två reella och två komplexa.. Hur många av dem du ska ange beror på hur frågan är ställd.
Kan du ladda upp en bild av själva uppgiften? Vilken bok, vilket kapitel är den från?
Tydligen var det meningen att x skulle vara reellt, och då är bara 3 och -3 lösningar.
(Skriv inte indexen för dina x upptill, då tror man att de är exponenter.)
Din lösning innehåller ganska många felaktigheter. Jag har markerat dem i denna bild:
- A - det ska vara .
- B - det ska vara , inte .
- ? - här förstår jag inte. Det du skriver betyder att , vilket inte stämmer.
Här är ett förslag på en lösning.
Läs noga igenom, fråga om allt du inte förstår.
Försök sedan att skriva dina egna lösningar på samma sätt.
Yngve skrev:Här är ett förslag på en lösning.
Läs noga igenom, fråga om allt du inte förstår.
Försök sedan att skriva dina egna lösningar på samma sätt.
Jag förstår allt förutom det sista, varför blir det inte x3= och x4= ska man inte ta i multiplicerat talet?
Yngve skrev:Här är ett förslag på en lösning.
Läs noga igenom, fråga om allt du inte förstår.
Försök sedan att skriva dina egna lösningar på samma sätt.
sen undrar jag också, i boken och facit har dom bara svarat med x1 och x2 på exempeln och i facit är det säkert att vi ska Svara med 4 lösningar?
mattegeni1 skrev:
Jag förstår allt förutom det sista, varför blir det inte x3=i1 och x4=i-1 ska man inte ta i multiplicerat talet?
Nej det är som.är lika med .
Alltså är
och
Yngve skrev:Nej det är som.är lika med .
Alltså är
och
ok så man svarar inte med 2 st i utan bara ett i alltså inte i x i ?
mattegeni1 skrev:
sen undrar jag också, i boken och facit har dom bara svarat med x1 och x2 på exempeln och i facit är det säkert att vi ska Svara med 4 lösningar?
Den frågan har jag redan besvarat här.
Yngve skrev:mattegeni1 skrev:sen undrar jag också, i boken och facit har dom bara svarat med x1 och x2 på exempeln och i facit är det säkert att vi ska Svara med 4 lösningar?
Den frågan har jag redan besvarat här.
det står bara lös ekvationerna då ska jag svara med 4 lösningar? men i facit har dom angett 2 lösningar?
har jag förstått rätt alla tal som man använder i är komplexa tal och alla tal som man inte använder i är reella ? reella= dvs kan vara positiv och negativ tal
Om det är en fjärdegradsekvation har den alltid exakt 4 lösningar (fast några av dem kan vara lika). När du läser Ma3 förväntas du veta att alla komplexa tal tal kan skrivas på formen a+bi där a och b är reella tal, och att de (komplexa) tal där b=0 är reella.