0
svar
35
visningar
What is the one-dimensional counterpart to the Green-Gauss theorem?
Är osäker om jag har svar rätt på dessa frågor, någon som kan kolla om jag har svarat rätt?
a) In a three-dimensional situation, the spatial variation of a scalar field is given by the gradient. What is the one-dimensional counterpart? Svar: the derivative
b) In a three-dimensional situation, a volume integral of a divergence of a vector field can be transformed into a surface integral (Gauss’s theorem). What is the one-dimensional counterpart? Svar: The flux integral of v over a bounding surface is the integral of its divergence over the interior.
c) What is the one-dimensional counterpart to the Green-Gauss theorem? Svar: Integration by parts