fountainhead behöver inte mer hjälp
fountainhead 44 – Fd. Medlem
Postad: 9 dec 2018 13:28

Volymberäkning av beskuren cylinder

Jag har följande problem:

Bilden visar en ost som först skurits lodrätt i två lika stora delar och sedan har halvan skurits snett som bilden visar, höjden på biten som är kvar är h, samma som den ursprungliga cylindern.

För att räkna ut volymen tänker jag att man kan dela upp den i oändligt många rektanglar i x-led med bredden dx och integrera, men jag kommer inte på något uttryck för rektangeln. Facit säger V=23r2h.

Laguna Online 30472
Postad: 9 dec 2018 13:42

y som funktion av x får du genom att betrakta den cirkulära basytan.

Höjden kan du komma fram till genom att titta på osten från sidan så den ser ut som en triangel. Då blir höjden en enkel funktion av x. 

fountainhead 44 – Fd. Medlem
Postad: 9 dec 2018 14:00
Laguna skrev:

y som funktion av x får du genom att betrakta den cirkulära basytan.

Höjden kan du komma fram till genom att titta på osten från sidan så den ser ut som en triangel. Då blir höjden en enkel funktion av x. 

 Med cirkelns ekvation blir y=±r2-x2.

Menar du k=zx=hrz=hrx?  Vad ska jag använda y till? Vet inte vilken variabel jag ska integrera med avseende på.

Laguna Online 30472
Postad: 9 dec 2018 14:21 Redigerad: 9 dec 2018 14:23

Du har valt x att integrera med avseende på, låter det som, när du talar om dx. y är en sida i dina rektanglar, om jag har förstått din beskrivning rätt.

Edit: 2y är en sida, snarare. 

fountainhead 44 – Fd. Medlem
Postad: 9 dec 2018 14:38
Laguna skrev:

Du har valt x att integrera med avseende på, låter det som, när du talar om dx. y är en sida i dina rektanglar, om jag har förstått din beskrivning rätt.

Edit: 2y är en sida, snarare. 

 Ok, så rektangelns bas blir 2r2-x2 och höjden z=hrx? Volymen blir då 0rhrx·2r2-x2dx, hur löser jag den?

AlvinB 4014
Postad: 9 dec 2018 15:32
fountainhead skrev:
Laguna skrev:

Du har valt x att integrera med avseende på, låter det som, när du talar om dx. y är en sida i dina rektanglar, om jag har förstått din beskrivning rätt.

Edit: 2y är en sida, snarare. 

 Ok, så rektangelns bas blir 2r2-x2 och höjden z=hrx? Volymen blir då 0rhrx·2r2-x2dx, hur löser jag den?

Jag förstår inte hur man skall kunna lösa denna integral på Matte-4 nivå. Så vitt jag vet har man inte lärt sig om substitutioner då, men det enda vettiga sättet jag ser att lösa denna integral är att göra en substitution med t=r2-x2t=r^2-x^2.

Kanske är det tänkt att man skall låta något datorprogram lösa integralen?

fountainhead 44 – Fd. Medlem
Postad: 9 dec 2018 15:59
AlvinB skrev:
fountainhead skrev:
Laguna skrev:

Du har valt x att integrera med avseende på, låter det som, när du talar om dx. y är en sida i dina rektanglar, om jag har förstått din beskrivning rätt.

Edit: 2y är en sida, snarare. 

 Ok, så rektangelns bas blir 2r2-x2 och höjden z=hrx? Volymen blir då 0rhrx·2r2-x2dx, hur löser jag den?

Jag förstår inte hur man skall kunna lösa denna integral på Matte-4 nivå. Så vitt jag vet har man inte lärt sig om substitutioner då, men det enda vettiga sättet jag ser att lösa denna integral är att göra en substitution med t=r2-x2t=r^2-x^2.

Kanske är det tänkt att man skall låta något datorprogram lösa integralen?

 Det har du rätt i, men substitutionen löste det i alla fall.

Svara
Close