24 svar
362 visningar
lamayo behöver inte mer hjälp
lamayo 2570
Postad: 25 maj 2020 07:08

visa att om f(x)=f(-x)=>f´(0)=0

Hur kan jag visa det?

Jag kommer inte på något..

Jag ser ju att det stämmer för tex f(x)=x^2 men som sagt vet jag inte hur jag ska visa det.

Tacksam för hjälp!

Yngve Online 40278 – Livehjälpare
Postad: 25 maj 2020 07:28

Sätt upp en central differenskvot kring x = 0, låt steglängden 2h gå mot 0.

Dr. G 9479
Postad: 25 maj 2020 08:35

f(x)=|x|f(x) =|x|

uppfyller

f(x)=f(-x)f(x) = f(-x)

men inte 

f'(0)=0f'(0)=0

Yngve Online 40278 – Livehjälpare
Postad: 25 maj 2020 09:06 Redigerad: 25 maj 2020 09:07

Bra poäng. Det bör finnas ett bivillkor att f(x) ska vara deriverar vid x = 0 alternativt att uppgiften lyder "Undersök om det gäller att ..."

@lamayo, hur ser uppgiften ut i sin helhet?

lamayo 2570
Postad: 27 maj 2020 20:42
Yngve skrev:

Bra poäng. Det bör finnas ett bivillkor att f(x) ska vara deriverar vid x = 0 alternativt att uppgiften lyder "Undersök om det gäller att ..."

@lamayo, hur ser uppgiften ut i sin helhet?

förlåt, missade att skriva att f är deriverbar

lamayo 2570
Postad: 27 maj 2020 20:42
Dr. G skrev:

f(x)=|x|f(x) =|x|

uppfyller

f(x)=f(-x)f(x) = f(-x)

men inte 

f'(0)=0f'(0)=0

Så det gäller inte?

lamayo 2570
Postad: 27 maj 2020 20:43
Yngve skrev:

Sätt upp en central differenskvot kring x = 0, låt steglängden 2h gå mot 0.

varför 2h?

Smaragdalena 80504 – Avstängd
Postad: 27 maj 2020 21:13
lamayo skrev:
Yngve skrev:

Sätt upp en central differenskvot kring x = 0, låt steglängden 2h gå mot 0.

varför 2h?

Det ger enklare beräkningar om man har en central differenskvot.

JohanB 168 – Lärare
Postad: 27 maj 2020 21:25

Ifall den är deriverbar så kanske det naturligaste är att prova att derivera?

Yngve Online 40278 – Livehjälpare
Postad: 27 maj 2020 23:21
JohanB skrev:

Ifall den är deriverbar så kanske det naturligaste är att prova att derivera?

Det går inte eftersom vi inte vet hur f(x) ser ut.

JohanB 168 – Lärare
Postad: 27 maj 2020 23:56

Vi vet ju att f(x)=f(-x). Då kan vi ju derivera om vi kan rätt deriveringsregel.

Yngve Online 40278 – Livehjälpare
Postad: 28 maj 2020 06:58
JohanB skrev:

Vi vet ju att f(x)=f(-x). Då kan vi ju derivera om vi kan rätt deriveringsregel.

Jag är osäker på vad du menar med att derivera här. Menar du alltså att vi kan få ett explicit uttryck för f'(x)f'(x) om vi bara väljer rätt deriveringsregel?

Och hur ska vi i så fall välja den så att vi vet om f'(x)f'(x) till exempel är lika med sin(x)sin(x), 4x4x eller 2xex22xe^{x^2}?

JohanB 168 – Lärare
Postad: 28 maj 2020 08:26 Redigerad: 28 maj 2020 08:26

Behövs ett explicit uttryck? Vad händer om vi deriverar båda sidorna, derivatan av f(x) blir ju f'(x), vad händer på högra sidan? Det kanske kan ge någon information om derivatan i 0.

foppa 280 – Fd. Medlem
Postad: 28 maj 2020 10:29 Redigerad: 28 maj 2020 10:39

Jag tänker att allmän f(x) --> hålla sig till allmän definition av derivata.

f'(x) = lim(h->0)  ( f(x + h) - f(x - h) ) / 2h

f'(0) = lim(h->0)  ( f(h) - f(-h) ) / 2h

Men eftersom f(x)=f(-x) för alla x, så har vi f(h)-f(-h)=0 för alla h, så det blir trivialt

f'(0) = lim(h->0)  0 / 2h = 0 för alla h

Dvs f'(0)=0

Laguna Online 30472
Postad: 28 maj 2020 12:23
JohanB skrev:

Behövs ett explicit uttryck? Vad händer om vi deriverar båda sidorna, derivatan av f(x) blir ju f'(x), vad händer på högra sidan? Det kanske kan ge någon information om derivatan i 0.

Menar du f'(x)=ddxf(x)=ddxf(-x)=-f'(-x)f'(x) =\frac{d} {dx} f(x) = \frac{d} {dx} f(-x) = -f'(-x), och sedan sätter man x = 0?

Yngve Online 40278 – Livehjälpare
Postad: 28 maj 2020 12:39 Redigerad: 28 maj 2020 12:41
JohanB skrev:

Behövs ett explicit uttryck? Vad händer om vi deriverar båda sidorna, derivatan av f(x) blir ju f'(x), vad händer på högra sidan? Det kanske kan ge någon information om derivatan i 0.

Ja då förstår jag vad du menar. Jag blev förvirrad av att du skrev

Då kan vi ju derivera om vi kan rätt deriveringsregel.

Jag tänkte att man inte använder någon deriveringsregel alls när man skriver att derivatan av f(x) är f'(x).

JohanB 168 – Lärare
Postad: 28 maj 2020 13:11

Precis, det var så jag menade. Man behöver ju ingen regel för f(x), men för f(-x) så behövs kedjeregeln.

foppa 280 – Fd. Medlem
Postad: 28 maj 2020 14:18

För er "volontärer": blir det inte bevisat genom min metod ovan? Nyfiken på om jag missat något. Att hålla sig till direkta deriveringsregler utan att veta formatet på f(x) låter som ett lite väl stort hopp i stringensen tycker jag.

Dr. G 9479
Postad: 28 maj 2020 16:21
foppa skrev:

Jag tänker att allmän f(x) --> hålla sig till allmän definition av derivata.

f'(x) = lim(h->0)  ( f(x + h) - f(x - h) ) / 2h

f'(0) = lim(h->0)  ( f(h) - f(-h) ) / 2h

Men eftersom f(x)=f(-x) för alla x, så har vi f(h)-f(-h)=0 för alla h, så det blir trivialt

f'(0) = lim(h->0)  0 / 2h = 0 för alla h

Dvs f'(0)=0

Du utgår inte från att f'(0) existerar. Resonemanget verkar hålla även för f(x) = |x|, men det gör det inte. 

Man måste nog titta på höger- och vänsterderivata för sig. De ska vara lika då f'(0) existerar. 

Laguna Online 30472
Postad: 28 maj 2020 16:25
Dr. G skrev:
foppa skrev:

Jag tänker att allmän f(x) --> hålla sig till allmän definition av derivata.

f'(x) = lim(h->0)  ( f(x + h) - f(x - h) ) / 2h

f'(0) = lim(h->0)  ( f(h) - f(-h) ) / 2h

Men eftersom f(x)=f(-x) för alla x, så har vi f(h)-f(-h)=0 för alla h, så det blir trivialt

f'(0) = lim(h->0)  0 / 2h = 0 för alla h

Dvs f'(0)=0

Du utgår inte från att f'(0) existerar. Resonemanget verkar hålla även för f(x) = |x|, men det gör det inte. 

Man måste nog titta på höger- och vänsterderivata för sig. De ska vara lika då f'(0) existerar. 

Men när man nu har fått veta att f är deriverbar, då fungerar det väl med +h/-h?

foppa 280 – Fd. Medlem
Postad: 28 maj 2020 17:48 Redigerad: 28 maj 2020 17:49

Tack Dr G, jag va lite slarvig i hur jag uttryckte mig. Jag förutsatte att vi inte fått all info i uppgiften utan att det också ligger ett antagande om deriverbarhet i x=0. Annars blir det ju konstigt att snacka f’(0), men det kanske finns något snyggt sätt att knyta ihop allt ändå.

Yngve Online 40278 – Livehjälpare
Postad: 28 maj 2020 17:52
foppa skrev:

För er "volontärer": blir det inte bevisat genom min metod ovan? Nyfiken på om jag missat något. Att hålla sig till direkta deriveringsregler utan att veta formatet på f(x) låter som ett lite väl stort hopp i stringensen tycker jag.

Jo det anser jag, och det var precis det jag menade ned mitt första svar i tråden.

Men den metod som JohanB tipsar om är elegantare och använder endast kedjeregeln.

Dr. G 9479
Postad: 28 maj 2020 19:25
Laguna skrev:

Men när man nu har fått veta att f är deriverbar, då fungerar det väl med +h/-h?

Ja, om derivatan existerar så kommer centraldifferenskvoten att gå mot derivatan när h går mot 0 (även om det bör bevisas).

Lite lurigt dock att centraldifferenskvoten blir 0 för alla h > 0, även för icke deriverbara jämna funktioner. 

lamayo 2570
Postad: 29 maj 2020 13:19

jag är inte helt hundra på hur jag ska göra..

Om jag ska använda centrala differenskvoten och x kring 0 är ju  lim2h->0f(h)-f(-h)2hmen hur hjälper det mig?

På andra sättet då derivatan av f(x) är f´(x). På högra sidan, hur ska jag kunna derivera f(-x) med kedjeregeln?

PATENTERAMERA 5981
Postad: 30 maj 2020 01:40

Om f’(0) existerar så gäller det att

f’(0) = limh0f(h)-f(-h)2h. Visa detta.

När det gäller kedjeregeln (som gäller för derivering av sammansättningen av två funktioner) så kan vi se funktionen xf(-x) som sammansättningen av f och funktionen g: x  -x.

Kedjeregeln ger oss då att (D är deriveringsoperatorn)

D(fg)(x)= Df(g(x))·Dg(x) = f’(-x)·(-1) = -f’(-x).

Svara
Close