Visa att funktionen saknar derivata
Hej,
Känns inte som jag är rätt ute här så vill dubbelkolla mina svar med er legender på PA:
Funktionen jag arbetar utifrån är:
Visa m.h.a derivatans definition att f saknar derivata för :
f()=, jag har tolkat det som att när absolutbeloppet är noll så har vi en spets i grafen och därav saknar derivata då vi saknar tangent där. Så det är mitt svar på den uppgiften helt enkelt.
Sen har vi att g(x)=f'(x) => visa för vilka värden g(x) är kontinuerlig:
Jag började med att derivera f(x) och fick då att g(x) blev följande:
, där vi har en kontinuerlig funktion x inte är -1 eller 1
Man brukar ju känna på sig när man är lite fel ut hehe, något jag absolut känner att jag är i det här fallet.
Har jag misstolkat frågorna?
Mvh
Fridein skrev:
Visa m.h.a derivatans definition att f saknar derivata för :
Du bör alltså utgå från f'(x) = lim h->0 (f(x+h) - f(x))/h och visa att detta gränsvärde inte existerar då x = pi.
Det är jag medveten om, men förstår inte hur jag ska gå till väga, om man målar grafen så ser man att vid plus och minus pi så är derivatan odefinerad samt när x=0 så är också derivatan odefinierad. Det här är på grund av att sinus blir noll och absolutvärdet noll. Förstår dock inte hur jag ska tillämpa derivatans definition, derivatan är ju inte odefinerad när jag till exempel sätter x=pi i g(x) som är lika med f'(x).
På vilket sätt tog du hänsyn till absolutbeloppet när du beräknade ?
Jag tog inte hänsyn till absolutbeloppet när jag räknade g(x) och jag fattar det som att deriveringsreglerna för sammansatta funktioner inte funkar i det här fallet, så jag var medveten om att det va fel, men det var min bästa gissning, tyvärr.
Man kan skriva:
Det ger:
Alright!
Har räknat precis allt i boken, varenda uppgift a-c, men känner mig ända helt nollad på såna här uppgifter som tydligen ska höra till matte4, så det känns som min mattenivå är för låg för att ens förstå hjälpen jag får här. Menmen... jag testar på det sättet du visa där. Tack för hjälpen!
Puffar tråden.
Hur gör jag för att visa att uttrycket saknar gränsvärde när x = pi?
Yngve skrev:Fridein skrev:
Visa m.h.a derivatans definition att f saknar derivata för :
Du bör alltså utgå från f'(x) = lim h->0 (f(x+h) - f(x))/h och visa att detta gränsvärde inte existerar då x = pi.
Du skall alltså visa att gränsvärdet blir olika när du närmar dig från höger respektive från vänster.
Eftersom den här tråden är grönmarkerad, är det många som inte bryr sig om att läsa mer i den - frågan är ju besvarad på ett tillfredsställande sätt redan. Det kan alltså vara smartare att starta en ny fråd ocm man vill ha hjälp. /moderator