5 svar
90 visningar
Aedrha 96
Postad: 24 sep 2022 13:48

Visa att en funktion är holomorf på enhetscirkeln.

Hej pluggakuten. Jag har suttit med en uppgift i ungefär en vecka nu. Har nog stirrat mig blind på den. Jag ska:

Visa att z=1f(z) dz = 0   ,  där f(z)=1sin2z

Jag har en lösning, tror jag. Men den känns så klumpig och omständlig att det måste finnas ett annat sätt.
Här är min lösning:

sin z=eiz-e-iz2i, sin2z=eiz-e-iz2i2=e2iz-2eize-iz+e-2iz-4e2iz-2+e-2iz-4z=1f(z) dz = z=1-4e2iz-2+e-2izdz

sen parametriserar jag kurvan...

f(z)=-4e2iz-2+e-2iz,    z(t)=eit, z'(t)=ieitdt,      0t2πz=1-4e2iz-2+e-2izdz=02π-4ieite2it-2+e-2itdt=-4i02πieite2it-2+e-2itdt-4i0πeite2it-2+e-2itdt+π2πeite2it-2+e-2itdt

sen utför jag ett variabel byte och jobbar med den högra integralen...
u=t-π,  t2π, uπdu=dt,  tπ, u0π2πeite2it-2+e-2itdt=0πeiuee2eiue-2+e-2eiuedu=-0πeiue2eiu-2+e-2eiudui sista steget ersätter jag e med -1-0πeiue2eiu-2+e-2eiudu=π0eiue2eiu-2+e-2eiudu=2ππeite-e2eite--2+e-2eite-dtersätter e- med -12ππ-eite2eit-2+e-2eitdt=π2πeite2eit-2+e-2eitdt=-0πeite2eit-2+e-2eitdt

Sen stoppar jag in denna integralterm i ursprungsuttrycket:
-4i0πeite2it-2+e-2itdt-0πeite2it-2+e-2itdt=0

 

Ja, det känns omständligt och jag vet inte om det är rätt.


Jag skulle uppskatta väldigt mycket om någon såg över det hela(vet att det är mycket). Kanske kom med et förslag på en bättre lösning!

Tack och trevlig helg!

Tomten 1827
Postad: 24 sep 2022 18:06

1. Holomorfi är något som bara kan finnas på öppna mängder, jag har åtminstone aldrig sett något annat. Enhetscirkeln är inte en öppen mängd i planet. Kan man mena enhetsskivan? Nej, f har ju en singularitet i origo (troligen väsentlig). Då är f inte holomorf där. Är du säker på att det är den givna funktionen som påståendet gäller?

Aedrha 96
Postad: 25 sep 2022 11:14

Titeln är fel. Det är inte att jag ska visa att funktionen är holomorf eller på enhetscirkeln. Jag var lite trött i huvudet när jag skrev det jag ber om ursäkt för detta. Tyvärr finns det ingen möjlighet att redigera inlägget eller titeln.

Det jag ska visa är: z=1f(z) dz =0    där    f(z)=1sin2z 

och det jag undrar är.

1. Har jag gjort rätt? Det finns inget facit eller lösningsförslag att kontrollera mot.
2. Finns det en enklare lösning? Min lösning känns onödigt klumpig.

Davitk 140 – Livehjälpare
Postad: 25 sep 2022 13:29
Aedrha skrev:

Titeln är fel. Det är inte att jag ska visa att funktionen är holomorf eller på enhetscirkeln. Jag var lite trött i huvudet när jag skrev det jag ber om ursäkt för detta. Tyvärr finns det ingen möjlighet att redigera inlägget eller titeln.

Det jag ska visa är: z=1f(z) dz =0    där    f(z)=1sin2z 

och det jag undrar är.

1. Har jag gjort rätt? Det finns inget facit eller lösningsförslag att kontrollera mot.
2. Finns det en enklare lösning? Min lösning känns onödigt klumpig.

Är du bekant med residysatsen?

Tomten 1827
Postad: 25 sep 2022 15:21

Trött uppe på loftet kan vi bli lite till mans. Inget konstigt med det. Du kanske undrar om det jag skrev innebär att integralen inte KAN bli 0? Det kan den. Det är bara om Varje ”glatt” sluten kurva ger integral =0 som f är holo. Se Moreras sats. Förslaget från Davitk rekommenderas.

Aedrha 96
Postad: 25 sep 2022 15:57

@ Davtik nej jag är inte bekant med residysatsen.

Svara
Close