Visa att ekvationen har lösningen …
Hej,
Fråga 2143 a) här med ”abc” formel, tar bild eftersom det är så stökigt att skriva ut allting i text.
Jag vet inte hur jag ska göra uppgiften i varje fall. Försöka lösa ut X på något sätt förmodar jag men.
Skriv om ekvationen som när du ska använda pq-formeln.
Använd pq-formeln.
Jo, tänkte det också, men vet inte vad jag ska göra med A:et. Det brukar inte vara med.
Eller ja, man dividerar ju bort det helst vanligen men.. prövar.
Ja, dividera allt med a.
Kom såhär långt, det är fel ser jag men halvt på vägen kanske..
Kan se att sista där blir b om man multiplicerar in det i b/2 innan man tar ^2, men man kan kanske inte göra så..
-4ac är magi bara
Du får dela ekvationen med a innan du börjar med pq-formeln.
Du kommer att se hur det blir -4ac.
Kom fram till något helt annat
Ska försöka igen.
Nej.. jag vet inte vad jag ska göra
Ekvationen är ax2 + bx + c = 0.
Du vill ha x2 "fritt" och delar därför båda leden med a.
x2 + bx/a + c/a = 0
Nu kan du ställa upp pq-formeln och ersätta p med b/a och q med c/a.
Om du inte direkt ställer upp lösningen med b/a och c/a.
Sedan återstår lite förenkling.
Nej, jag är för korkad. Det är för svårt.
Skriver av facit så kanske något fastnar av vad de gjort där.
Tack hur som helst.
Nejdå. Skriv upp pq-formeln.
Den utgår ju från att ekvationen har formen x2 + px + q = 0.
Har du inte löst andragradsekvationer med den?
Sedan byter du ut p mot b/a och q mot c/a.
Jag förstår vad jag ska göra men jag grejar inte förenklingen alls. Vad är -(b/a) /2 till att börja med. Jag kan inte tolka uttrycket.
jag vet att man multiplicerar i ett sånt här fall vanligtvis, så då borde det bli -b/a * a/2a. Eller blir det 2b kanske?
i vilket fall ska det bli - b/2a ser jag i facit men. Jag fattar inte
Här är vad Matteboken skriver om pq-formeln.
Där finns även en härledning av den.
Visa hur långt du kommit.
Ja, -(b/a)/2 = -b/2a. Delar man ett bråk med ett tal hamnar talet i bråkets nämnare.
Exempel: vad är hälften av 1/3?
Såhär långt
Bra, så när som på att du sätter 2:an i nämnaren på b/a.
Sedan ska vi förenkla det som står under rottecknet.
Börja med att skriva kvadraten utan parentes (kvadrera täljare och nämnare).
Fortsätter imorgon…
Tack 😊
Godnatt
Nu ska det trollas dit 4a till c på höger sida. Testade en massa beräkningar med faktiska värden nu och det verkar bli fel att bara multiplicera 4a ifrån b^2/4a^2 med C så jag vet inte..
Nu ser det bra ut. Men i stället för att trolla förlänger du c/a med 4a.
Detta för att få bråken under rottecknen på gemensamt bråkstreck.
Hm okej, men måste man inte förlänga båda bråken då vanligtvis?
Typ så det blir ba/4a^3 - 4ac/4a^3.
Förlänger man endast en så ändrar man väl värdet. Eller man gör kanske inte det när täljare och nämnare multipliceras med lika..
Såhär får jag nu:
Här räckte det att förlänga i det andra bråket för att de skulle få samma nämnare.
Ett bråks värde ändras inte av att man multiplicerar täljare och nämnare med samma tal.
Nu kan bråken skrivas på gemensamt bråkstreck.
Eftersom nämnaren 4a2 är en kvadrat kan roten 2a flyttas ut som nämnare under rottecknet.
Och eftersom den nämnaren är samma som i det inledande -b/2a kan hela högerledet
skrivas på ett bråkstreck.
Och simsalabim har du fått det uttryck som du skulle visa i a)-uppgiften!
Jadu..
Tack så mycket.
Jag är med på det.
Kollade på detta igen men jag fattar inte riktigt i alla fall.
Vi har b^2/4a^2, och eftersom 4a är en kvadrat kan vi flytta ned 2a ifrån det till ett bråk dividerat med 2a eller vadå?
Borde inte det bli då (b^2/2a) / 2a i slutändan?
istället försvinner ju ett set med 2a och det blir b^2/2a kvar.
Sitter och stirrar på det och kan inte förstå det logiskt själv tyvärr vad som händer.
Eller jaha, vi väljer att ta roten ur nämnaren enbart istället för hela uttrycket menar du och får på så vis 2a kvar… kanske fattar ändå.
Men varför då inte ta roten ur b och 4ac också? För att det egentligen inte leder till någon förenkling?