7 svar
132 visningar
Anonymus95 61
Postad: 3 mar 2021 16:10

Vilken metod ska användas? Problemlösning

Hej, jag hade slutprov i MA2B där jag bland annat fick denna uppgift: 

En familj ska köpa en surfplatta och en högtalare för 6795kr. 

Försäljaren erbjuder familjen 50% rabatt på högtalaren om de köper en extra surfplatta och då landar priset på 10695kr.

Vad kostar surfplattan och vad kostar högtalaren (ordinariepris)? 

 

Satt med denna uppgift länge och blev arg på mig själv för att jag inte kunde klura ut den. 

Ture 10343 – Livehjälpare
Postad: 3 mar 2021 16:13

man kan sätta upp ett ekvationssystem

1.)  s+h = 6795

2.)  2s+0,5h = 10695

som kan lösas med valfri metod

jakobpwns 529
Postad: 3 mar 2021 16:15

Låt oss döpa de okända till variabler

surfplattans pris: x

högtalarens pris: y

Första meningen säger oss att x + y = 6795

Andra meningen säger oss att 2x + 12y = 10 695 (två surfplattor, 50% på högtalaren innebär en halv y)

Nu kan vi lösa vad x och y blir

Anonymus95 61
Postad: 3 mar 2021 17:40
jakobpwns skrev:

Låt oss döpa de okända till variabler

surfplattans pris: x

högtalarens pris: y

Första meningen säger oss att x + y = 6795

Andra meningen säger oss att 2x + 12y = 10 695 (två surfplattor, 50% på högtalaren innebär en halv y)

Nu kan vi lösa vad x och y blir

Så långt är jag med, men vad är nästa steg? Jag har försökt lösa denna med additionsmetoden men vet inte vad jag ska gångra ekvation 1 eller 2 med för att på nåt sätt få bort y från ekvationen. Är van vid att ekvationerna har olika tecken. 

jakobpwns 529
Postad: 3 mar 2021 17:56

Sådana strategier (additionsmetoden, dividera ekvationerna med varandra, osv.) kan vara bra ibland, men den metoden som i princip alltid fungerar som jag nog använder 99% av gångerna är substitutionsmetoden. Ekvation 1 kan skrivas som x = 6795 - y, right? Jag tog -y på båda sidorna. Nu sätter vi in det i ekvation två, så istället för 2x får vi 2(6795 - y).

Vi får alltså: 2(6795 - y) + 1/2 y = 10 695, vilket gör att vi kan lösa vad y blir. När vi hittat y, kan vi hitta x också tack vare den första ekvationen x = 6795 - y.

jakobpwns 529
Postad: 3 mar 2021 18:01

Om du vill använda additionsmetoden här kan du t.ex. multiplicera allting i ekvation två med (-2). Då får istället ekvationen -4x -y = -21 390... men jag tycker sånt är svårare än att göra substitutionsmetoden för man måste först klura ut vad man ska göra innan det går att använda additionsmetoden, det blir ett extra steg typ.

Anonymus95 61
Postad: 3 mar 2021 18:47
jakobpwns skrev:

Om du vill använda additionsmetoden här kan du t.ex. multiplicera allting i ekvation två med (-2). Då får istället ekvationen -4x -y = -21 390... men jag tycker sånt är svårare än att göra substitutionsmetoden för man måste först klura ut vad man ska göra innan det går att använda additionsmetoden, det blir ett extra steg typ.

Testade substitutionsmetoden istället och fastnade nu på -1,5y= 2795 eftersom 2(6795-y)+0,5y kan skrivas om till 13590-1,5y. Hur går jag vidare? 

jakobpwns 529
Postad: 3 mar 2021 19:14
Anonymus95 skrev:
jakobpwns skrev:

Om du vill använda additionsmetoden här kan du t.ex. multiplicera allting i ekvation två med (-2). Då får istället ekvationen -4x -y = -21 390... men jag tycker sånt är svårare än att göra substitutionsmetoden för man måste först klura ut vad man ska göra innan det går att använda additionsmetoden, det blir ett extra steg typ.

Testade substitutionsmetoden istället och fastnade nu på -1,5y= 2795 eftersom 2(6795-y)+0,5y kan skrivas om till 13590-1,5y. Hur går jag vidare? 

2(6795 - y) + 1/2 y = 10 695

13 590 - 1,5y = 10 695 (Hit verkar du ha kommit, nu kan vi ta - 13 590 på båda sidorna för att få y ensamt.)

-1,5y = -2895 (Nu kan vi dividera båda sidorna med -1,5 så att bara y finns kvar.)

y = 1930 kr 

Nu sätter vi in detta i ekvation 1 och får x = 

x = 6795 - 1930 = 4865 kr

Svara
Close