4 svar
43 visningar
Jaha16 70
Postad: 15 sep 13:48

Vilken fart har glaset??

Jag har löst a uppgiften men vet inte hur jag ska ta mig till i b uppgiften!!

Yngve 40528 – Livehjälpare
Postad: 15 sep 13:57 Redigerad: 15 sep 13:59

Det är likformigt föränderlig rörelse (dvs konstant acceleration), så generellt gäller följande:

vx(t)=v0x+axtv_x(t) = v_{0x}+a_xt

vy(t)=v0y+aytv_y(t) = v_{0y}+a_yt

Och farten |v(t)|=vx(t)2+vy(t)2|v(t)| =\sqrt{v_x(t)^2+v_y(t)^2}

Jaha16 70
Postad: 15 sep 13:58
Yngve skrev:

Det är fritt fall som gäller.

vx(t)=v0x+axtv_x(t) = v_{0x}+a_xt

vy(t)=v0y+aytv_y(t) = v_{0y}+a_yt

Och farten |v(t)|=vx(t)2+vy(t)2|v(t)| =\sqrt{v_x(t)^2+v_y(t)^2}

Hej vilken formel använder du dig av??

Yngve 40528 – Livehjälpare
Postad: 15 sep 14:00 Redigerad: 15 sep 14:01

De första två är hastighetsformlerna vid konstant acceleration.

Den tredje är Pythagoras sats vid vektoraddition.

Rita en figur där du sätter ut hastighetsvektorer i x- och y-led vid nedslagstillfället, bilda vektorsumman av dessa så ser du nog att uttrycket blir just så.

Jaha16 70
Postad: 15 sep 14:01
Yngve skrev:

De första två är hastighetsformlerna vid konstant acceleration.

Den tredje är Pythagoras sats vid vektoraddition.

Jahaaaaa tänkte inte på att man kunde rita ut vektorer, tack för hjälpen jag förstår nu!!!

Svara
Close