Varför skyddar vissa material bätte mot radioaktiv strålning
Hej Jag lyckas inte hitta någon bra information för det här. Är det någon som vill förklara eller kan länka en sida som jag kan läsa?
Vilka sökord har du googlat på?
Smaragdalena skrev:Vilka sökord har du googlat på?
"När strålning möter materia"
"Varför skyddar vissa material bättre mot radioaktiv strålning"
"Varför skyddar tex bly bra mot joniserande strålning"
Jag håller på att skriva en labbrapport om hur olika olika material minskar/hindrar olika typer av radioaktiv strålning
Vilka sidor har du läst i Wikipedia?
Smaragdalena skrev:Vilka sidor har du läst i Wikipedia?
Jag får inte upp några wikipedia sidor som sökförslag, om du har någon specifik i åtanke så kan du gärna länka den till mig
Vad står det om det hår på Wikipedia-sidan om bly? Jag skulle bärja med att läsa där.
Smaragdalena skrev:Vad står det om det hår på Wikipedia-sidan om bly? Jag skulle bärja med att läsa där.
Jag har försökt att leta och läsa väldigt mycket, men det känns fortfarande väldigt oklart över hur och varför visa material lyckas stoppa strålning. På wikipedia om bly står det bara "bly skärmar av mot joniserande strålning och är särskilt effektiv mot röntgenstrålning." I min Fysikbok står det såhär, men jag lyckas inte förstå det nog att skriva om det.
Från artikeln om alpha particle på engelska Wikipedia:
Because of their charge and large mass, alpha particles are easily absorbed by materials, and they can travel only a few centimetres in air. They can be absorbed by tissue paper or by the outer layers of human skin. They typically penetrate skin about 40 micrometres, equivalent to a few cells deep.
Motsvarande om beta:
Of the three common types of radiation given off by radioactive materials, alpha, beta and gamma, beta has the medium penetrating power and the medium ionising power. Although the beta particles given off by different radioactive materials vary in energy, most beta particles can be stopped by a few millimeters of aluminium. However, this does not mean that beta-emitting isotopes can be completely shielded by such thin shields: as they decelerate in matter, beta electrons emit secondary gamma rays, which are more penetrating than betas per se. Shielding composed of materials with lower atomic weight generates gammas with lower energy, making such shields somewhat more effective per unit mass than ones made of high-Z materials such as lead.
Being composed of charged particles, beta radiation is more strongly ionizing than gamma radiation. When passing through matter, a beta particle is decelerated by electromagnetic interactions and may give off bremsstrahlung x-rays.
In water, beta radiation from many nuclear fission products typically exceeds the speed of light in that material (which is 75% that of light in vacuum), and thus generates blue Cherenkov radiation when it passes through water. The intense beta radiation from the fuel rods of swimming pool reactors can thus be visualized through the transparent water that covers and shields the reactor (see illustration at right).
respektive gamma
Gamma rays are ionizing radiation and are thus hazardous to life. Due to their high penetration power, they can damage bone marrow and internal organs. Unlike alpha and beta rays, they easily pass through the body and thus pose a formidable radiation protection challenge, requiring shielding made from dense materials such as lead or concrete. On Earth, the magnetosphere protects life from most types of lethal cosmic radiation other than gamma rays, which are absorbed by 0.53 bars of atmosphere as they penetrate the atmosphere.
Smaragdalena skrev:Från artikeln om alpha particle på engelska Wikipedia:
Because of their charge and large mass, alpha particles are easily absorbed by materials, and they can travel only a few centimetres in air. They can be absorbed by tissue paper or by the outer layers of human skin. They typically penetrate skin about 40 micrometres, equivalent to a few cells deep.
Motsvarande om beta:
Of the three common types of radiation given off by radioactive materials, alpha, beta and gamma, beta has the medium penetrating power and the medium ionising power. Although the beta particles given off by different radioactive materials vary in energy, most beta particles can be stopped by a few millimeters of aluminium. However, this does not mean that beta-emitting isotopes can be completely shielded by such thin shields: as they decelerate in matter, beta electrons emit secondary gamma rays, which are more penetrating than betas per se. Shielding composed of materials with lower atomic weight generates gammas with lower energy, making such shields somewhat more effective per unit mass than ones made of high-Z materials such as lead.
Being composed of charged particles, beta radiation is more strongly ionizing than gamma radiation. When passing through matter, a beta particle is decelerated by electromagnetic interactions and may give off bremsstrahlung x-rays.
In water, beta radiation from many nuclear fission products typically exceeds the speed of light in that material (which is 75% that of light in vacuum), and thus generates blue Cherenkov radiation when it passes through water. The intense beta radiation from the fuel rods of swimming pool reactors can thus be visualized through the transparent water that covers and shields the reactor (see illustration at right).
respektive gamma
Gamma rays are ionizing radiation and are thus hazardous to life. Due to their high penetration power, they can damage bone marrow and internal organs. Unlike alpha and beta rays, they easily pass through the body and thus pose a formidable radiation protection challenge, requiring shielding made from dense materials such as lead or concrete. On Earth, the magnetosphere protects life from most types of lethal cosmic radiation other than gamma rays, which are absorbed by 0.53 bars of atmosphere as they penetrate the atmosphere.
Stort tack för hjälpen, det här hjälpte mycket.