4 svar
106 visningar
Eugenia behöver inte mer hjälp
Eugenia 147
Postad: 12 nov 2021 12:24

Varför konstanter försvinner när vi deriverar uttryck?

Jag har en uppgift i en matte bok 5000 3bc vux, 2309 b. 

Så  när jag deriverar uttrycket f(x) = x^3-x^2+x-1 ska -1 försvinna eller? Hur går x-lösa konstanter  ner i grad? 

Bedinsis 2894
Postad: 12 nov 2021 12:36

Det stämmer att konstanter försvinner då man deriverar.

Jag kan komma med åtminstone två förklaringar varför:

1. Om vi bara tar en funktion som bara är en konstant, t.ex. f(x) =5, hur ser den då ut då man ritar upp den? Den bildar bara en enda vågrät linje, utan uppgång eller nedgång, med ett konstant värde. Eftersom det bara är ett konstant värde måste ju den momentana förändringen i kurvan (även känd som derivatan) vara 0, eftersom kurvan är oföränderlig.

2. Om f(x)= 5 kan man se det som att f(x)= 5*x0. Enligt derivationsreglerna blir då f'(x)= 0*5*x0-1 vilket innebär multiplikation med 0, och därmed blir derivatan ju 0.

beerger 962
Postad: 12 nov 2021 12:55

Det vi bryr oss om med derivatan är tangents lutning i en viss punkt, inte vilket m-värde ekvationen för tangenten har.

En konstant förflyttar bara grafen upp och ner, och har således ingen påverkan på tangentens lutning.

Eugenia 147
Postad: 12 nov 2021 13:03
Bedinsis skrev:

Det stämmer att konstanter försvinner då man deriverar.

Jag kan komma med åtminstone två förklaringar varför:

1. Om vi bara tar en funktion som bara är en konstant, t.ex. f(x) =5, hur ser den då ut då man ritar upp den? Den bildar bara en enda vågrät linje, utan uppgång eller nedgång, med ett konstant värde. Eftersom det bara är ett konstant värde måste ju den momentana förändringen i kurvan (även känd som derivatan) vara 0, eftersom kurvan är oföränderlig.

2. Om f(x)= 5 kan man se det som att f(x)= 5*x0. Enligt derivationsreglerna blir då f'(x)= 0*5*x0-1 vilket innebär multiplikation med 0, och därmed blir derivatan ju 0.

 Tack så mycket! Jag förstår nu!

Stuart 81
Postad: 12 nov 2021 13:46 Redigerad: 12 nov 2021 13:50

Använd defintionen.

Definition start.

Om limh0f(x+h)-f(x)h\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} existerar så säger vi att f är deriverbar i x.

Gränsvärdet kallas derivatan av f i punkten x som betecknas med f'(x)f'(x)

Slut på definition.

 

Den beskriver förändring runt punkten x, ΔyΔx\frac{\Delta y}{\Delta x}. Det sker ingen förändring i y-led av en konstant.

Så om du har en konstant cc och använder definitionen för derivata har vi,

limh0c-ch=limh00h=0\lim_{h\to 0}\frac{c-c}{h}=\lim_{h\to 0}\frac{0}{h}=0.

Svara
Close