vad för regel kan man använda istället för pqformeln?
Hej jag går på teknisk basår och där har läraren sagt att man INTE får använda pq formeln på tenta men om man får en sådan uppgift exempel p(x)= 4/2x^2-16x-8 och dom frågar "för vilka x är uttrycket inte definierat?" hur löser jag den då?
Parenteser är viktiga.
Vilken av följande menar du?
För att hitta nollställen till ett andragradsuttryck utan att använda pq-formeln kan du istället kvadratkomplettera eller faktorisera.
Yngve skrev:Parenteser är viktiga.
Vilken av följande menar du?
- $$p(x)=\frac{4}{2}x^2-16x-8}$$
För att hitta nollställen till ett andragradsuttryck utan att använda pq-formeln kan du istället kvadratkomplettera eller faktorisera.
nr 3 menar jag som du skrivit kan du visa hur man gör denhär uppgiften den är påhittad men vill se bara så jag förstår hur jag löser utan kvadreringsregler och faktorisering uppskattas!!!
Här hittade jag lite mer information men jag förstår fortfarande inte hur -5 blev till -23? och hur dom fick 2(x+3)^2
Du kan läsa en mer utförlig beskrivning av kvadratkomplettering här.
Läs den och fråga om det du behöver få förklarat.
Om jag härledde pq-formeln själv och sedan använde den, skulle jag bli underkänd då?
Laguna skrev:Om jag härledde pq-formeln själv och sedan använde den, skulle jag bli underkänd då?
ja enligt läraren pga vi inte får använda pq formel utan bara kvadratkompletering men kan du vara snäll och förklara hur man räknar med kvadratkompletering har läst det Yngve länkade men jag förstår verkligen inte kan ni ge ett enkel exempel? tycker det är så komplicerat
Det finns ett enkelt exempel i den text jag länkade till.
Men här är ett till:
Kvadratkomplettera uttrycket .
Vi börjar med att bryta ut den gemensamma faktorn 2:
Vi vill nu skriva uttrycket innanför parenteserna på kvadratkompletterad form .
Vi kan nu gå tillväga på olika sätt.
Ett sätt är att multiplicera ut vårt uttryck och jämföra termer.
Om detta uttryck ska vara identiskt med för alla värden på så måste det gälla att
Den första ekvationen ger oss och den andra .
Sammanfattat gäller att och vi kan då skriva .
alla kvadratiska uttryck kan kvadratkompletteras. enklast görs det genom att faktorisera ut talet framför x2 termen först.
Laguna skrev:Om jag härledde pq-formeln själv och sedan använde den, skulle jag bli underkänd då?
Jag fattar inte heller? I en härledning av kvadratkompletering så får man ju som resultat PQ-formeln.
Hej M. G.,
Det viktiga är att du insett att kvoten inte är definierad då nämnaren , där
Ekvationen är samma sak som ekvationen
- Om du kvadratkompletterar denna andragradsekvation så får du följande andragradsekvation.
2. Med hjälp av Konjugatregeln kan du faktorisera det kvadratkompletterade uttrycket.
3. Nu ser du för vilka två tal som nämnaren