21 svar
169 visningar
destiny99 behöver inte mer hjälp
destiny99 8066
Postad: 4 maj 2020 16:25

Uppgift 32

Hej! Jag vet att man ska hitta primitiv funktion till a(t) som blir 3t-5e^0,20t. Sen vet jag ej mer 

Mega7853 211
Postad: 4 maj 2020 16:30

Fundera på varför du ska hitta den primitiva funktionen. Vad innebär den primitiva funktionen till accelerationen? När du har listat ut det så blir resten av uppgiften ganska lätt.

Affe Jkpg 6630
Postad: 4 maj 2020 16:33

Hej! Jag vet att man ska hitta primitiv funktion till a(t) som blir 3t-5e^0,20t. Sen vet jag ej mer 

a(t)=3-e0.2t=0

Johannes.C 22 – Fd. Medlem
Postad: 4 maj 2020 16:37

Tänk att funktionen är förändring i hastighet (acceleration), vad borde då den primitiva funktionen representera?

destiny99 8066
Postad: 4 maj 2020 16:38
Mega7853 skrev:

Fundera på varför du ska hitta den primitiva funktionen. Vad innebär den primitiva funktionen till accelerationen? När du har listat ut det så blir resten av uppgiften ganska lätt.

Därför att den primitiva funktionen ger hastigheten till accelerationen då om man derivera en gång till blir det accelerationen. Den primitiva funktionen till accelerationen innebär att hastigheten kan besrämma vid en specifik tidpunkt då accelerationen är lika med noll. 

destiny99 8066
Postad: 4 maj 2020 16:40
Affe Jkpg skrev:

Hej! Jag vet att man ska hitta primitiv funktion till a(t) som blir 3t-5e^0,20t. Sen vet jag ej mer 

a(t)=3-e0.2t=0

Ur detta ekvation fick jag ut tiden 2,70805...

Smaragdalena 80504 – Avstängd
Postad: 4 maj 2020 17:09

Ur detta ekvation fick jag ut tiden 2,70805...

Vad är det som är speciellt med just den tiden?

Affe Jkpg 6630
Postad: 4 maj 2020 17:16

Ur detta ekvation fick jag ut tiden 2,70805...

e0.2t=30.2t=ln(3)t=...

destiny99 8066
Postad: 4 maj 2020 17:24
Affe Jkpg skrev:

Ur detta ekvation fick jag ut tiden 2,70805...

e0.2t=30.2t=ln(3)t=...

Jag fick att tiden är 5, så vi kan integrera från 0 till 5,493061... 

destiny99 8066
Postad: 4 maj 2020 17:34 Redigerad: 4 maj 2020 18:16
Johannes.C skrev:

Tänk att funktionen är förändring i hastighet (acceleration), vad borde då den primitiva funktionen representera?

Den primitiva funktionen representerar förändring i förflyttningen?

 

Såhär blev det för mig. 

Affe Jkpg 6630
Postad: 4 maj 2020 18:15

Jag fick att tiden är 5, så vi kan integrera från 0 till 5,493061... 

Jag anar att det finns en poäng med att låta bli decimaltalen och skriva:

t = 5*ln(3)

Glöm nu inte att:
v0 = 9.5m/s

destiny99 8066
Postad: 4 maj 2020 18:17 Redigerad: 4 maj 2020 19:19
Affe Jkpg skrev:

Jag fick att tiden är 5, så vi kan integrera från 0 till 5,493061... 

Jag anar att det finns en poäng med att låta bli decimaltalen och skriva:

Vad menar du med 5*ln(3)? 

t = 5*ln(3)

Glöm nu inte att:
v0 = 9.5m/s

Vad menar du med det? 

Affe Jkpg 6630
Postad: 4 maj 2020 18:32

Vad menar du med 5*ln(3)? 

t=ln(3)0.2=5*ln(3)

Vad menar du med det? 

I denna uppgift vid tiden t=0, kan hastigheten skrivas v = v= 9.5 m/s

destiny99 8066
Postad: 4 maj 2020 18:40 Redigerad: 4 maj 2020 18:44

Ja v =v0+v/2, dock säger facit att den primitiva funktionen är 3,0t-5e^0,20t+14,5

Affe Jkpg 6630
Postad: 4 maj 2020 18:54

F(t)=3t - 5e0.2t + 14.5F(t=0)=...

Hej! Jag vet att man ska hitta primitiv funktion till a(t) som blir 3t-5e^0,20t.

Det är fel, eftersom du glömde konstanten som brukar skrivas "C"

destiny99 8066
Postad: 4 maj 2020 19:15
Affe Jkpg skrev:

F(t)=3t - 5e0.2t + 14.5F(t=0)=...

Hej! Jag vet att man ska hitta primitiv funktion till a(t) som blir 3t-5e^0,20t.

Det är fel, eftersom du glömde konstanten som brukar skrivas "C"

Hur fick du till 14,5 i ekvationen? Jag hänger ej med tyvärr.. 

Affe Jkpg 6630
Postad: 4 maj 2020 19:22 Redigerad: 4 maj 2020 19:23

a(t)=f(t)=3 - e0.2tv(t)=F(t)=3t - 5e0.2t +Cv(t=0)=F(t=0)=-5+C=9.5C=14.5

Smaragdalena 80504 – Avstängd
Postad: 4 maj 2020 19:34 Redigerad: 4 maj 2020 21:25

Du vet att när v t = 0 är partikelns hastighet 9,5 m/s. Använd detta för att räkna ut rätt värde på integrationskonstanten C.

EDIT: rättade felskrivning. Tack Affe!

Affe Jkpg 6630
Postad: 4 maj 2020 19:52

Du vet att när v = 0 är partikelns hastighet 9,5 m/s

Du vet att när t = 0 är partikelns hastighet 9,5 m/s

destiny99 8066
Postad: 4 maj 2020 20:31

Jag gjorde det, men jag får ej hastighetens värde. Dock får jag 86,128554 när jag integrerar från 0 till 5 med primitiva funktionen 3t-5e^0,2t+14,5t 

Smaragdalena 80504 – Avstängd
Postad: 4 maj 2020 21:26

Visa steg för steg hur du gör när du räknar fram värdet på integrationskonstanten C. 

Affe Jkpg 6630
Postad: 4 maj 2020 22:07

Jag gjorde det, men jag får ej hastighetens värde. Dock får jag 86,128554 när jag integrerar från 0 till 5 med primitiva funktionen 3t-5e^0,2t+14,5t 

Vadå integrera?

a(t)=dv(t)dtv(t)=3t-5e0.2t+14.5

Svara
Close