2
svar
66
visningar
Soderstrom behöver inte mer hjälp
Underrum
är ett underrum. OK. Men varför är inte det??? På grund av det där "eller" mellan ekvationerna? Om ja, varför? Båda uppfyller ju alla tre axiom.
M4 är två plan.
Ta en linjärkombination av en vektor i ena planet och en vektor i andra planet så hamnar den generellt sett inte i något av planen, så inte i M4.
Du kan få en följdfråga, om du vill prova:
Bevisa eller motbevisa att unionen av två vektorunderrum är ett vektorunderrum om och endast om den ena är en delmängd av den andra.
(Jag tror det är sant)
Bevisa också att snittet av två vektorunderruum alltid är ett vektorunderrum