Triangles maximala area
Så mitt problem är att sätta upp ett uttryck för triangelns area. Eftersom vi har sidan på kvadraten så använde jag Pythagoras sats för att räkna ut diagonalen. Sedan kallade jag triangelns höjd (hypotinusan - x). Men jag kom ingen vart eftersom jag inte på något vis lyckades få ut basen. Jag hade en tanke att det kanske skulle kunna gå att använda det faktum att triangeln var likbent, och därmed att vinklarna på de nedre hörnen var lika stora, men även där lyckades jag inte få något vidare resultat.
Den sträcka du kallar x i din beskrivning kan du använda för att teckna triangelns bas.
Rita en figur och visa hur långt du kommit, och lägg upp den här.
AspiringRealLifeHealer skrev:
Ser du hur du kan teckna triangels bas med hjälp av x? (titta på den lilla triangeln)
Ärligt talat, nej. X är den lilla triangelns höjd. Arean för den lilla triangeln kan uttryckas (x×b)/2= A(liten triangel). Basen skulle då kunna uttryckas A×2/x. Men jag vet inte arean på lilla triangeln. Menade du på något annat sätt?
Kalla halva basen för b/2. Då får du en liten minitriangel med katetrar b/2 och x. Du vet även vinklarna i den minitriangeln...
Är detta på grund av att den stora triangeln är liksidig? Att kateterna är lika långa alltså.
(Ganska kass figur)
Okej så jag fattar fortfarande inte hur jag ska uttrycka den stora triangelns area.
En annan angreppsvinkel är att beräkna hela kvadratens area och subtrahera de tre trianglarna utaför den sökta triangelns area. De tre trianglarna är lätta att beräkna
Höjden har du redan ett uttryck för, med .
Triangelns area
Okej så det jag vet är att jag behöver ett uttryck som jag sedan kan derivera för att få fram maximala arean. Jag är jätteförvirrad över hur jag ska göra det. Jag har försökt i flera timmar att få nått uttryck på den här triangeln. Skulle uppskatta om någon skulle kunna skriva hur man kommer fram till ett sådant uttryck för jag verkar inte kunna, inte ens med ledning.
AspiringRealLifeHealer skrev:Okej så det jag vet är att jag behöver ett uttryck som jag sedan kan derivera för att få fram maximala arean. Jag är jätteförvirrad över hur jag ska göra det. Jag har försökt i flera timmar att få nått uttryck på den här triangeln. Skulle uppskatta om någon skulle kunna skriva hur man kommer fram till ett sådant uttryck för jag verkar inte kunna, inte ens med ledning.
Jag postade just.
JohanF skrev:(Ganska kass figur)
b/2 = x och den tredje sidan =
Om du går på mitt förslag och låter z beteckna avståndet mellan triangelns kontakt med en sida och det diagonala hörnet.
Då blir triangelns area
10*10- ((10-z)2/2) - 2*(10-z)10/2
Dvs hela kvadraen - lilla triangeln längst ned till höger - de två resterande triangalarna
JohanF skrev:Höjden har du redan ett uttryck för, med .
Triangelns area
satte upp uttrycket, och deriverade som jag gjort på liknande uppgifter. Men svaret ska vara 50, så jag har gjort någonting fel någonstans
Du har gjort rätt ända tills du ska sätta , där börjar du tänka fel.
detta x ger max area.
AspiringRealLifeHealer skrev:Är detta på grund av att den stora triangeln är liksidig? Att kateterna är lika långa alltså.
Nä, orsaken till att katetrarna är lika långa beror på vinkeln 45grader i diagonalen på den ursprungliga kvadraten. Dvs om uppgiften hade handlat om en rektangel med olika långa sidor istället för en kvadrat, så skulle vinkeln och därmed förhållandet mellan katetrarna varit annorlunda.
Tack så mycket för hjälpen JohanF :D
Gör som du har blivit tipsad om flera gånger: Beräkna den blå triangelns area som kvadratens area minus tre trianglar (varav två är lika stora). Vilket uttryck för arean får du då?
AspiringRealLifeHealer skrev:Tack så mycket för hjälpen JohanF :D
Det var så lite. Du hade börjat på ett fungerande angreppsätt med kört fast lite. (Ägna en tanke till varför svaret blev som det blev, och titta på larsolof's figur, exakt halva kvadratens area)