15 svar
297 visningar
Nelly1455562 behöver inte mer hjälp
Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 18:50 Redigerad: 6 okt 2018 18:53

Triangel

"I en triangel ABC är sidorna tre på varandra följande naturliga tal alla > 3. Dra höjden mot den näst längsta sidan. Höjden delar den sidan i två delar. Beräkna skillnaden i längd mellan dessa två delar."

 

Hur ska man tänka/börja??

Smutstvätt 24967 – Moderator
Postad: 6 okt 2018 19:00

Rita en bild! Vad betyder det att "sidorna är tre på varandra följande naturliga tal alla större än tre"?

Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 19:24 Redigerad: 6 okt 2018 19:34

Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 19:25

Linjen i mitten är x

Lunatic0 70 – Fd. Medlem
Postad: 6 okt 2018 19:32

Det står att höjden ska dras mot den näst längsta sidan av triangeln. I det här fallet är sidan a+1

Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 19:43

Jag tänkte så här : 

(a+2)^2+a^1/2= 5a+4

löser jag det så får jag a=0,8

triangel 1 : 0,8/2+0,8+1+5*0,8+4=10,2

triangel 2 : 0,8/2+0,8+2+5*0,8+4= 11,2

skillanden : 11,2-10,2=1

Lunatic0 70 – Fd. Medlem
Postad: 6 okt 2018 19:55

 Hur löser du den? Jag får:

a+22+a12=5a+4a2+4a+4+a12=5a+4a2+a12=aa2+a=a

Vilket gör inte grejer enklare

Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 20:36 Redigerad: 6 okt 2018 20:36

Jag hade räknat fel..oj såg det nyss. Hur ska jag tänka..:/

Kallaskull 692
Postad: 6 okt 2018 21:27

(bilden ej skalenlig) Hoppas man kan se vad jag skrivit :)

Nelly1455562 414 – Avstängd
Postad: 6 okt 2018 22:29 Redigerad: 6 okt 2018 22:55

I texten står att man ska dra sträck till den näst längsta men du har ju ritat stäcket till den längsta sidan ab. Super bra ritat! Tack för hjälpen. Förstår inte varför man skriver x^2+4x+4-x^2?? 

Hur kan hypotenusa - hypotenusa vara lika stor som katetenrna av båda trianglarna subtraherat med varandra?? I sjätte steget så skrev du (a-b) (b+a) hur kan detta förkortas och bli  b-a??

 

Tacl för hjälpen!!!!

Nelly1455562 414 – Avstängd
Postad: 7 okt 2018 09:35 Redigerad: 7 okt 2018 09:40

Last question.. varför har du subtraherat alla sidor med varandra = (X+2)^2-X^2   Hur kan hypotenusan-hypotenusan vara lika mycket som sidan a-b och höjden minus höjden?? Varför är (x+2 )^2 - x^2 lika långa som x+1 sidan +höjden

 

tack för er hjälp och tålamod!

Smaragdalena 80504 – Avstängd
Postad: 7 okt 2018 10:23

Kalaskull har skrivit att bilden inte är skalenlig. Därför ser det ut som att höjden är dragen mot den längsta sidan, men om du tittar på vad det är skrivet så ser du att den nedersta sidan är x+1.

Kalaskull har skrivet Pythagoras sats för de båda rätvinkliga trianglar. Sedan är det mycket tydligt beskrivet - man tar ekvation 2 minus ekvation 1 (man har använt kvadreringsregeln samtidigt på ekvation 2). Då blir man av med h2h^2i vänsterledet. I sjätte steget har man använt konjugatregeln baklänges. Man kan se på bilden att a+b=x+1a+b=x+1.

Det här var en svår uppgift för att vara Ma1.

Nelly1455562 414 – Avstängd
Postad: 7 okt 2018 11:06 Redigerad: 7 okt 2018 11:08


Så ser min lösning ut, men det är 2 saker jag undrar över. 

 

1. Kan man byta ut variablerna som jag gjort i sista steget, jag bytte ut x med b? Så att man ska kunna förkorta.

 

2. Hur kan (a-b-h)^2 vara lika mycket som (X+2)^2 - X^2??

Smaragdalena 80504 – Avstängd
Postad: 7 okt 2018 11:28

Du måste börja från början, så som Kalaskull gjorde. Du kan inte bara slänga fram din första rad som en trollkarl som plockar fram en kanin ur sin hatt.

Varför tror du att du kan byta ut 1?

Varför tror du att du kan byta ut b mot x?

Däremot kan du se på bilden som Kalaskull gjorde att a+b=x+1. Därför kan du byta ut a+b mot x+1, eftersom det är två olika sätt att beskriva samma sida i triangeln.

Nelly1455562 414 – Avstängd
Postad: 7 okt 2018 12:00

Jaha då förstår jag varför man tar a^2-h^2-b^2-h^2=(x+2)^2-x^2

för att a^2+h^2=(x+2)^2

             B^2-h^2=x^2 för att (a^2+h^2)- (b^2-h^2)=(x+2)^2 . 

 

A+B= X+1

är för att (a-b)* (a+b)= 4(x+1)

x+1 , plus står i båda parantesen, man kan dra en slutsats att a+1 för b är 1

Smaragdalena 80504 – Avstängd
Postad: 7 okt 2018 12:45

Man använder Pythagoras sats på de båda trianglarna. Man tar den ena ekvationan minus den andra för att bli av med alla h. Om man tar ekvationen för den stora triangeln minus ekvationen för den lilla triangeln, får man ett positivt uttryck på vardera sidan. När man förenklat, får man ekvationen $$a^2-b^2=4x-4. Om man använder kojugatregeln (som man egentligen inte lär sig förrän i Ma2) baklänges på VLoch bryter ut 4  ur HL, får man $$(a+b)(a-b)=4(x+1)$$.

Om man tittar på sin bild, ser man att a+b=x+1a+b=x+1, eftersom båda uttrycken beskriver den näst längsta sidan i triangeln. Alltså kan man byta ut a+ba+b mot x+1x+1, och när man har gjort det kan man dela båda sidorna med x+1x+1, och då får man fram att a-b=4a-b=4, d v s att skillnaden i längd mellan de båda delarna av den näst längsta sidan är 4 cm.

x+1 , plus står i båda parantesen, man kan dra en slutsats att a+1 för b är 1

Nej.

Svara
Close