Topptriangel
Jag fick ett tips med att använda pythagoras sats men jag fattar inte riktigt hur om vi säger att sträckan DE är a^2 så borde sträckan DC vara b^2 och EC c^2.
Men svaret för sträckan DE är inte 4.
vunja skrev:Jag fick ett tips med att använda pythagoras sats men jag fattar inte riktigt hur om vi säger att sträckan DE är a^2 så borde sträckan DC vara b^2 och EC c^2.
Men svaret för sträckan DE är inte 4.
Pythagoras sats är ena katetern ^2 + andra katetern ^2 = hypotenusan ^2 dvs som du skrev a2 + b2 = c2
Alltså för den mörkare triangeln kommer 12^2 (a) + b^2 = 16^2 (c)
Därifrån kan du lösa ut b genom att subtrahera med 12^12 på båda sidor, och sedan ta roten ur det
Skulle man kunna lösa uppgiften såhär? Se bild nedan
Ikan08 skrev:Skulle man kunna lösa uppgiften såhär? Se bild nedan
Det ser bra ut!