Tolka betydelsen av områdets area
Jag har svårt att tolka integraler, skulle verkligen behöva hjälp med denna uppgift
Tack på förhand
Arean under grafen har samma enhet som motsvaras av enheten på x-axeln gånger enheten på y-axeln. Beräknar du enheten på arean inser du ganska fort vad den syftar mot :)
Jo att det handlar om hastighet förstår jag. Det som jag inte förstår är vad det givna intervallet () säger om hastigheten. Jag tolkar det som att arean beskriver hur mycket hastigheten förändras mellan tiden 0 och tiden t, men det säger mig ingenting. Handlar förändringen om en minskning eller ökning?
Accelerationen är ju positiv, så det är en positiv hastighetsökning. Om man startar från vila så beskriver arean hur hög hastighet man har tiden t efter start.
Groblix skrev:. Beräknar du enheten på arean inser du ganska fort vad den syftar mot :)
Hehe 👍
Okej jag ska försöka summera det som ni sade, ni får gärna säga till om detta är fel:
Arean under a-t-grafen beskriver ökningen i hastighet i intervallet 0 till t. Om vi hittar på att hastigheten från början är 0 m/s så kommer hastigheten vid tidpunkten t att vara . Om hastigheten från början är t.ex. 10 m/s så kommer hastigheten vid tidpunkten t att vara
theg0d321 skrev:Okej jag ska försöka summera det som ni sade, ni får gärna säga till om detta är fel:
Arean under a-t-grafen beskriver ökningen i hastighet i intervallet 0 till t. Om vi hittar på att hastigheten från början är 0 m/s så kommer hastigheten vid tidpunkten t att vara . Om hastigheten från början är t.ex. 10 m/s så kommer hastigheten vid tidpunkten t att vara
Nej, det är själva funktionskurvan som beskriver "ökningen i hastighet", d v s accelerationen. Arean under kurvan beskriver hastigheten. Resten stämmer.
Kurvan beskriver den momentana hastighetsökningen, t.ex. ”just nu ökar hastigheten med 10 m/s2”. Arean beskriver hur hastigheten har ändrats totalt sett. Om arean motsvarar 10 m/s så betyder det att hastigheten är 10 m/s högre vid tiden t jämfört med tiden 0.
Tillägg: 20 nov 2021 12:42
Jag tycker alltså att det som skrevs i inlägg #6 är korrekt.
Ah, då tror jag att jag har fått kläm på det hela. Tack!
Teraeagle skrev:Kurvan beskriver den momentana hastighetsökningen, t.ex. ”just nu ökar hastigheten med 10 m/s2”. Arean beskriver hur hastigheten har ändrats totalt sett. Om arean motsvarar 10 m/s så betyder det att hastigheten är 10 m/s högre vid tiden t jämfört med tiden 0.
Tillägg: 20 nov 2021 12:42
Jag tycker alltså att det som skrevs i inlägg #6 är korrekt.
Det verkar bero på hur men tolkar "ökningen i hastighet". Slutsatsen är att man inte för använda ett så otydligt/dubbeltydigt begrepp utan "hastighetsökning" eller "acceleration" beroende på vilket det är man menar.