10 svar
79 visningar
Inkognito behöver inte mer hjälp
Inkognito 29
Postad: 6 maj 00:49 Redigerad: 6 maj 01:04

Tillämpningar och problemlösningar

Produkten av två på varandra följande positiva udda heltal är 1155

Vilket är det mellanliggande jämna heltalet?

jag har kommit fram till följande

y, x, z (talföljd där x är det jämna talet)

y+z =1155

Jag vet att ett udda tal betecknas:

x+1

Hej.

Du har börjat bra med att kalla talen y, x

och z.

Men du har skrivit sambandet mellan y och z lite fel. Läs frågan igen.

Sedan finns det ytterligare samband mellan de tre talen.

Att det är heltal som följer efter varandra innebär att x = y+1 och att z = x+1.

Kommer du vidare då?

Inkognito 29
Postad: 6 maj 11:21

Ja, juste

x•z =1155

Okej,  jag tror jag har gjort fel i att beteckna udda tal med : x+1 och utan det borde betecknas med  x-1

och utifrån detta så har jag löst problemet så här:

OK, ser du något konstigt med din lösning?

Inkognito 29
Postad: 6 maj 12:51 Redigerad: 6 maj 12:51

ja, det ska vara x2 ≈ -33

Jag tänkte mer att x inte blir ett heltal, vilket det ju ska vara.

Sedan så sätter du ju det ena udda talet till x-1, vilket betyder att x måste vara ett jämnt tal.

Titta igenom din uppställning av ekvationen en gång till.

Alternativ tanke: Om x är det jämna talet i mitten, har vi (x-1)(x+1) = 1155. VL ser väldigt mycket ut som konjugatregeln, och i så fall är (x-1)(x+1) = x2-1 = 1155 så x2 = ...

Inkognito 29
Postad: 10 maj 20:47

Då får jag en dubbelrot, X1=-34 och x= 34

Går det bra om jag skriver in båda tal som svar eftersom det är heltal?

Yngve 40254 – Livehjälpare
Postad: 10 maj 20:51
Inkognito skrev:

Då får jag en dubbelrot, X1=-34 och x= 34

Det stämmer.

Går det bra om jag skriver in båda tal som svar eftersom det är heltal?

Läs uppgiften igen. Ser du någon ledtråd där?

Inkognito 29
Postad: 10 maj 21:13

Juste positiva heltal, tack för hjälpen!

Yngve 40254 – Livehjälpare
Postad: 10 maj 21:15

👍

Svara
Close