Tentafråga
svaret är finns det någon som kan förklara för mig hur de har valt Y1 och även den delen där står [symmetri]?
tacksam för svar.
Har du ritat upp området?
I så fall skulle du se att det är en halvsfär, paraboloid och att det inte är en sluten kropp. För att kunna använda Gauss' sats behöver man ett slutet område, därför lägger man till ett platt, cirkelformat lock och integrerar över den kroppen istället - sedan tar man bort "integralen av locket" på slutet.
Om man integrerar en udda funktion, exempelvis x, över ett symmetriskt intervall blir rsultatet alltid 0. Det är det man menar med att man förenklar p g a symmetri, som du frågade om.
EDIT: rättade feltänk (betydelselöst i sammanhanget, men det bör ändå rättas till)
Poängen med att lägga till ytan är ju att vi vill få en sluten yta så att vi kan applicera Gauss sats. Originalytan Beskriver ju en paraboloid som pekar uppåt. För att sluta ytan lägger vi då till "botten" på vår paraboloid. Alltså en disk med radien 1 som ligger i -planet.
Symmetrin kan vi förstå om vi tittar på vad de faktiskt gör i detta steg. Det som händer är ju att -termen försvinner. För att förstå det kan vi dela upp integranden lite
Nu tittar vi på den andra termen som innehåller faktorn . Vi kan ju se att -faktorn byter tecken beroende på tecknet på , men det gör inte . Alltså kommer termen bli noll eftersom vi integrerar över en disk. Alla värden för negativa tar ju ut de för positiva.