Tangentlinje
Bestäm tangentlinje-ekvation till funktionen f(x) = 1+3sin(2x) där x=0.
Tänker att man måste först bestämma y-koordinaten.
f(0) = 1+3sin(2*0) och det blir väl 1. 1+0. Eller?
Sen om det är rätt så ska man derivera va?
Helt rätt!
f'(x) = 1+3 cos (2x)
Tangentens k-värde:
f'(0) = 1+3 cos (2*0) = 4+0
Är det korrekt?
Nej det är fel.
Derivatan av en konstant är 0.
När du deriverar sinusfunktionen måste du ha med med den inre derivatan. Dvs derivatan av 2x. (derivering av sammansatt funktion)
Ture skrev:Nej det är fel.
Derivatan av en konstant är 0.
När du deriverar sinusfunktionen måste du ha med med den inre derivatan. Dvs derivatan av 2x. (derivering av sammansatt funktion)
Så hur blir det då? f'(0) = 1+3cos(2). Derivatan av 2x är väl 2.
Det var ett tag sen jag läste matte så har lite luckor här och där. Hoppas ni har överseende med det
Du behöver repetera kedjeregeln. f'(u(x) = f'(u)*u'(x) där u'(x) kallas inre derivatan.
Smaragdalena skrev:Du behöver repetera kedjeregeln. f'(u(x) = f'(u)*u'(x) där u'(x) kallas inre derivatan.
Dum fråga men behöver man det här?
Trodde man kunde räkna ut det utan.
Men okej. Svårt med vilken formel som är rätt. f'(u(x) = f'(u)* u'(x) ---> 1+3cos(2x) eller?
f(u)=3*sin(u) Vad är f'(u)?
u(x)=2x Vad är u'(x)?
Vad är f'(u(x)) = f'(u)*u'(x)?
Konstanten 1 har derivatan 0, så den behöver vi inte bry oss om.
Smaragdalena skrev:f(u)=3*sin(u) Vad är f'(u)?
u(x)=2x Vad är u'(x)?
Vad är f'(u(x)) = f'(u)*u'(x)?
Konstanten 1 har derivatan 0, så den behöver vi inte bry oss om.
f(u) = 3*sin(u) ---> f'(u) = 3 *cos *3
u(x)=2x ---> u'(x) = 2
f'(u(x)) = f'(u)*u'(x)? ---> f' =3* cos *3 * 2
så eller?
Nej. Vad är derivatan av sin(u)?
Smaragdalena skrev:Nej. Vad är derivatan av sin(u)?
u' * cos(u)? Så vadå det är bara då 3 *cos eller?
santas_little_helper skrev:Smaragdalena skrev:Nej. Vad är derivatan av sin(u)?
u' * cos(u)? Så vadå det är bara då 3 *cos eller?
Du kan inte skriva cos utan någont argument, det betyder ingenting! Det är ungefär som att fråga "Hur mycket är 5+?"
Smaragdalena skrev:santas_little_helper skrev:Smaragdalena skrev:Nej. Vad är derivatan av sin(u)?
u' * cos(u)? Så vadå det är bara då 3 *cos eller?
Du kan inte skriva cos utan någon variabel, det betyder ingenting! Det är ungefär som att fråga "Hur mycket är 5+?"
Förlåt men vad blir det då?
Derivatan av sin(3x) är cos(3x) multiplicerat med inre derivatan av 3x, dvs 3.
Så derivatan av sin(3x) är alltså cos(x)*3.
EDIT - glömde en trea framför vinkeln x
Så derivatan av sin(3x) är alltså cos(3x)*3.
Kommer du vidare då?
Yngve skrev:Derivatan av sin(3x) är cos(3x) multiplicerat med inre derivatan av 3x, dvs 3.
Så derivatan av sin(3x) är alltså cos(x)*3.
Kommer du vidare då?
Jahaaa okej tack. Är nog för trött. Gick blint efter vad som stod i formelbladet.
så f'(u(x)) = f'(u)*u'(x)? ---> f' = cos (x)*3 * 2
eller hur?
f'(0) = cos(0) *3 * 2 = 6
Stämmer det då?
Ja, eftersom f(x) = 1 + 3*sin(2x) så är f'(x) = 3*cos(2x)*2
Yngve skrev:Ja, eftersom f(x) = 1 + 3*sin(2x) så är f'(x) = 3*cos(2x)*2
Även den bäste kan göra fel hehe
Skrev 3 * cos tidigare men hade fel tecken efter.
Okej jag tror jag fattar nu.
f'(x)= 3 × cos(2x) ×2 ---> f'(0)= 3×cos(2×0) ×2= 6
Ja det stämmer.
Du vet alltså att tangenten i den punkten har lutningen 6.
Nästa steg är att få fram tangentens ekvation.
Yngve skrev:Ja det stämmer.
Du vet alltså att tangenten i den punkten har lutningen 6.
Nästa steg är att få fram tangentens ekvation.
K-värdet är 6 alltså. X=0 och Y är ju 1 va?
Y-YA = K (X - XA) ---> Y-1 = 6(X-0)
Y= 6x -0 +1 = 6x+1
Det måste väl vara korrekt?
Det måste väl vara korrekt?
Rita, så kan du se om det ser rimligt ut.
Smaragdalena skrev:Det måste väl vara korrekt?
Rita, så kan du se om det ser rimligt ut.
Det ser rimligt ut. Lutningen är 6.
Du måste rita in sinus-funktionen f(x) = 1+3sin(2x) också för att kunna avgöra om det är rätt eller inte.
Smaragdalena skrev:Du måste rita in sinus-funktionen f(x) = 1+3sin(2x) också för att kunna avgöra om det är rätt eller inte.
Hur gjorde man det? Va ett tag sen man höll på med detta:/
Det enklaste är om du matar in båda funktionerna i din grafritande räknare.
Smaragdalena skrev:Det enklaste är om du matar in båda funktionerna i din grafritande räknare.
gjorde det.
Det där ser ut att bara vara den ena funktionen.
Lägg även in y = 6x + 1 och zooma in området runt x = 0.
Lägg in båda linjerna i samma bild, annars är det väldigt svårt att se om det ser riktigt ut.
Lägg in båda linjerna i samma bild, annars är det väldigt svårt att se om det ser riktigt ut.
Yngve skrev:Det där ser ut att bara vara den ena funktionen.
Lägg även in y = 6x + 1 och zooma in området runt x = 0.
Hur zoomar man? Vet inte hur man gör på räknaren.
Hur zoomar man? Vet inte hur man gör på räknaren.
Om du tittar på din bild, så ser du att det finns en knapp som är märkt ZOOM. Har du undersökt vad som händer om du klickar på den?
Smaragdalena skrev:Hur zoomar man? Vet inte hur man gör på räknaren.
Om du tittar på din bild, så ser du att det finns en knapp som är märkt ZOOM. Har du undersökt vad som händer om du klickar på den?
Jaha okej. Var det så lätt? Trodde man behövde gå in på window-knappen. Så?
Ja. Vad drar du för slutsats?
Verkar den räta linjen y = 6x + 1 vara en tangent till sinuskurvan vid x = 0?
Det tycker jag. Håller du inte med? :)
Jo det gör jag. Och det är rätt. Men det är bra för dig att träna på att själv kontrollera dina resultat eftersom du inte har Pluggakuten att fråga på proven.
Sant! Tack så mycket:)