13 svar
183 visningar
Maremare behöver inte mer hjälp
Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 19:44

surjektiv funktion (diskret matematik)

Ska avgöra om detta är falskt eller sant:

jag tänkte att om den är surjektiv så är värdemängden för funktionen B och då borde väl antal element vara i A vara max så många som i B för at det fanns element i A som inte får någon avbildning så är inte den surhektiv?

Eller förstår inte hur man ska tänka?

tips uppskattas

Det är rätt sätt att tänka. Om en funktion är surjektiv måste alla element i B nås minst en gång. Om du har fem element i A och sju element i B, kan då en funktion från A till B vara surjektiv?

Smutsmunnen 1050
Postad: 31 mar 2020 19:59

Det är svårt att ge tips till hur man löser en så grundläggande uppgift, i princip behöver du bara förstå definitionen och kanske testa något exempel.

Gör det enkelt för dig själv, ta en mängd med ett element och en med två element. Försök hitta surjektioner från den ena till den andra. Det finns ju inte så många funktioner mellan så små mängder så du kan kolla alla. Från vilken mängd till vilken mängd finns surjektioner och i vilken finns inga?

Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 20:00
Smutstvätt skrev:

Det är rätt sätt att tänka. Om en funktion är surjektiv måste alla element i B nås minst en gång. Om du har fem element i A och sju element i B, kan då en funktion från A till B vara surjektiv?

ja det kan man, så är det alltså falskt och inte sant som jag trodde innan?

PATENTERAMERA 5989
Postad: 31 mar 2020 20:05

”Korrektast” vore väl att säga att om f är en surjektiv funktion från A till B så gäller det att B  A.

Maremare skrev:
Smutstvätt skrev:

Det är rätt sätt att tänka. Om en funktion är surjektiv måste alla element i B nås minst en gång. Om du har fem element i A och sju element i B, kan då en funktion från A till B vara surjektiv?

ja det kan man, så är det alltså falskt och inte sant som jag trodde innan?

Hur? Rita upp ett exempel på en sådan funktion som är surjektiv. :)

Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 20:42
Smutstvätt skrev:
Maremare skrev:
Smutstvätt skrev:

Det är rätt sätt att tänka. Om en funktion är surjektiv måste alla element i B nås minst en gång. Om du har fem element i A och sju element i B, kan då en funktion från A till B vara surjektiv?

ja det kan man, så är det alltså falskt och inte sant som jag trodde innan?

Hur? Rita upp ett exempel på en sådan funktion som är surjektiv. :)

jaha oj nej blandade ihop det, nej det går inte att vara surjektiv då. så vad händer då i denna fråga? det står att A kan vara lika som B i antalet då kan det ju bli surjektiv?

Om funktionen är surjektiv kan |A| = |B|. Frågan är då om det finns någon surjektiv funktion där |A| < |B|. Som vi visade med exemplet A = 5 och B = 7, är det inte möjligt. Påståendet måste alltså vara falskt. :)

Maremare 1044 – Fd. Medlem
Postad: 1 apr 2020 10:03
Smutstvätt skrev:

Om funktionen är surjektiv kan |A| = |B|. Frågan är då om det finns någon surjektiv funktion där |A| < |B|. Som vi visade med exemplet A = 5 och B = 7, är det inte möjligt. Påståendet måste alltså vara falskt. :)

yes jag är med på det men i frågeställningen står det mindre eller lika med, och eftersom lika med finns med dvs inte  A < B utan A mindre, eller lika med B så borde det vara sant ju eftersom A = B kan vara surjektiv?

vad är det då för skillnad på om frågan hade varit A < B ochA B? falsk på båda? känns konstigt eftersom villkoret kan ju vara lika med på den senare

Frågan är om vi alltid kan säga att påståendet stämmer – Om vi vet att det är en surjektiv funktion, vet vi då garanterat att |A| ≤ |B|?

Spoiler alert!

Nej. :D

Smaragdalena 80504 – Avstängd
Postad: 1 apr 2020 10:29

Om du har en utsaga som består av två påståenden med "och" emellan så är den sann om och endast om båda påståendena är sanna.

Maremare 1044 – Fd. Medlem
Postad: 1 apr 2020 21:09

så med andra ord är det ingen skillnad i frågeställningen mellan A<B och AB utan båda är falsk?

Smutsmunnen 1050
Postad: 2 apr 2020 12:40
Maremare skrev:

så med andra ord är det ingen skillnad i frågeställningen mellan A<B och AB utan båda är falsk?

Alltså för specifika mängder A och B kan det ju hända att den ena är falsk medan den andra är sann men som ett generellt påstående om två ändliga mängder vilka som helst så är det ingen skillnad mellan dem, utan båda är falska. På det sättet är frågan lite otydlig, den borde vara kanske varit formulerad,

För alla ändliga mängder A,B, är det sant att om f är en surjektiv funktion A->B så är |A|<=|B|.

Maremare 1044 – Fd. Medlem
Postad: 3 apr 2020 16:50
Smutsmunnen skrev:
Maremare skrev:

så med andra ord är det ingen skillnad i frågeställningen mellan A<B och AB utan båda är falsk?

Alltså för specifika mängder A och B kan det ju hända att den ena är falsk medan den andra är sann men som ett generellt påstående om två ändliga mängder vilka som helst så är det ingen skillnad mellan dem, utan båda är falska. På det sättet är frågan lite otydlig, den borde vara kanske varit formulerad,

För alla ändliga mängder A,B, är det sant att om f är en surjektiv funktion A->B så är |A|<=|B|.

yes okej då är jag med, tack för  hjälpen!

Svara
Close