summor av normalfördelning
en maskin klipper till bomullsband i bitar, vilkas längder visar en slumpmässig variation sådan att längden av ett på måfå valt band är N(1.00, 0.05) vid ett tillfälle vill man ha 10 bitar med en sammanlagd längd på 10 m
Tag ett band slumpmässigt(längd = l) och klipp till ytterligare 9 precis lika långa bitar.
sammanlagda längden blir då n = 10l
beräkna P(|n - 10 | < 0.2)
Är lite osäker på vart jag ska börja här. absolutbeloppet som ställer till det. brukar vara P(n < 0.2) eller något liknande men blir osäker nu när det är absolutbelopp hur jag ska göra.
Om det är absolutbeloppet som ställer till det så kan du omformulra villkoret |n-10|<0.2 med hjälp av komplementhändelsen (n<9.8 eller n>10.2)
Du kan uttrycka |n - 10 | < 0.2 som att n > 9,8 och n < 10,2, och sannolikheten att n finns i det intervallet är P(n > 9,8) - P(n > 10,2).
Välkommen till Pluggakuten!
Olikheten betyder att avståndet mellan talen och ska vara mindre än . Markera talen och på tallinjen; talet ska ligga mellan dessa två tal.
Du ska alltså beräkna sannolikheten
där slumptalet är normalfördelat med väntevärde meter och standardavvikelse meter.
albibla skrev:Välkommen till Pluggakuten!
Olikheten betyder att avståndet mellan talen och ska vara mindre än . Markera talen och på tallinjen; talet ska ligga mellan dessa två tal.
Du ska alltså beräkna sannolikheten
där slumptalet är normalfördelat med väntevärde meter och standardavvikelse meter.
Detta gjorde ju det väldigt enkelt. Jag förstår inte riktigt varför jag har sånt problem att "se" sannolikheten P(0.98 < l < 1.02)
nu när du skrev upp den är det ju självklart att den förväntande längden är 1 meter och vi vill ta redan på sannolikheten att den inte aviker mer än 0.2 från det måttet.
Som sagt att komma till detta steg är det svåraste :O
yuri999 skrev:albibla skrev:Välkommen till Pluggakuten!
Olikheten betyder att avståndet mellan talen och ska vara mindre än . Markera talen och på tallinjen; talet ska ligga mellan dessa två tal.
Du ska alltså beräkna sannolikheten
där slumptalet är normalfördelat med väntevärde meter och standardavvikelse meter.
Detta gjorde ju det väldigt enkelt. Jag förstår inte riktigt varför jag har sånt problem att "se" sannolikheten P(0.98 < l < 1.02)
nu när du skrev upp den är det ju självklart att den förväntande längden är 1 meter och vi vill ta redan på sannolikheten att den inte aviker mer än 0.2 från det måttet.
Som sagt att komma till detta steg är det svåraste :O
jag kanske talade lite för snabbt , såg idag att jag hade slagit fel värden och av slumpen fått rätt svar.
min uträkning ser ut som detta
och detta är ju ett problem då tabellen som jag slår upp i går till värdet 3,6. så jag antar att jag räknat tokigt här
Ingår den här delen
Tag ett band slumpmässigt(längd = l) och klipp till ytterligare 9 precis lika långa bitar.
också i själva uppgiften, eller är det något du har skrivit själv? Det ä rnämligen helt andra beräkningar än om man skall ta 10 band och summera deras längder.