Stötdämpare
Figuren visar en enkel stötdämpare. Friktionskraften mellan kolven och den omslutande fasta cylindern är proportionell mot kolvens fart. Fjäderns kraft är proportionell mot dess längdändring. Tillhörande konstanter betecknas med r respektive k . Vi bortser från kolvens och fjäderns massa.
Mot stötdämparen rör sig en lättrullande vagn med en buffert enligt figuren. Vagnens massa är 0,300 kg och dess fart 0,500 m/s. k=5,00 N/m och r=2,50 kg/s.
a) Teckna ekvationen för vagnens rörelse medan den är i kontakt med stötdämparen.
b) Hur långt trycks fjädern ihop?
Så här har jag löst första delen:
Enligt Newtons andra lag:
För b-delen har jag tagit reda på samtliga lösningar till differential ekvationen:
När kolven närmar sig sitt slutläge ska , dvs hastigheten, bli noll. Om jag nu deriverar y med avseende på t, då får jag:
Sätter jag den här lika med noll, får jag följande ekvation:
Och här har jag kört fast. Eftersom jag inte vet värdena på då går det inte att räkna ut t ?
Du vet hastighet och läge vid tidpunkten 0.
Kan det ge något?
Massa skrev:Du vet hastighet och läge vid tidpunkten 0.
Kan det ge något?
Just det! Nu är jag med. Vid tiden t=0 är y=0 och y´=0,500 m/s.
Efter insättningen av c1 och c2 i ekvationen kan vi räkna ut tiden:
Nu är det bara att sätta in detta värde i y och då får jag y=0,044 m vilket stämmer.
Men nu har jag en annan fråga. Frågan lyder hur länge dröjer det innan vagnen släpper kontakten med stötdämparen och hur fort rör den sig då?
Kan du med ord beskriva varför vagnen släpper kontakten med stötdämparen?
Visa spoiler
Ledning:
Skissa kurvan för , vad händer vid extrempunkten?
Jroth skrev:Kan du med ord beskriva varför vagnen släpper kontakten med stötdämparen?
Visa spoiler
Ledning:
Skissa kurvan för , vad händer vid extrempunkten?
För att kraften från dämparen upphävs vilket leder till att vagnen släpper kontakten med dämparen. Med andra ord ska accelerationen bli noll så att kraften också blir noll. Därmed antar hastigheten sitt största värde då vagnen tappar sin kontakt med stötdämparen.
Men då undrar jag om jag ska få fram en ny partikulär lösning med villkoren till den ursprungliga differential ekvationen eller ska jag ställa upp en ny ekvation?
Anledningen till att jag tänker på en ny ekvation är att friktionskraften, i det fallet, är motsatt riktad till fjäderkraften. Så här menar jag:
Och då tänker jag att ekvationen ska se ut så här:
Eller har jag tänkt fel? I så fall varför?
Den första stycket är rätt tänkt. Sedan tycker jag att du skall tänka en vända till.
PATENTERAMERA skrev:Den första stycket är rätt tänkt. Sedan tycker jag att du skall tänka en vända till.
Vilket stycke menar du? Du menar att motiveringen för varför vagnen släpper stötdämparen är korrekt men resten stämmer inte?
Ja motiveringen är korrekt. Men tänk på att har olika tecken då vagnen rör sig åt olika håll. Så måste man ha olika ekvationer beroende på i vilken riktning vagnen rör sig?
PATENTERAMERA skrev:Ja motiveringen är korrekt. Men tänk på att har olika tecken då vagnen rör sig åt olika håll. Så måste man ha olika ekvationer beroende på i vilken riktning vagnen rör sig?
Ja, det är sant att tecknet på påverkar ekvationen. Men hur ska ekvationen se ut i så fall? Jag har provat på många olika sätt men ändå får en ekvation som inte har nån lösning alls. Det blir så att jag sätter
lika med noll och då får jag det till ett naturlig logaritm-uttryck på ena sidan och ett negativt värde på andra sidan vilket leder till inget svar!
Vad får du fram för extrempunkt för hastigheten? Här menar jag med den ursprungliga relationen.
Ledning
Ditt första stycke som Patenteramera pratar om innehåller all information du behöver för att lösa uppgiften. Exempelvis:
Vad får du om du sätter detta lika med noll?
Ebola skrev:Vad får du fram för extrempunkt för hastigheten? Här menar jag med den ursprungliga relationen.
Ledning
Ditt första stycke som Patenteramera pratar om innehåller all information du behöver för att lösa uppgiften. Exempelvis:
Vad får du om du sätter detta lika med noll?
Kraftekvationen i andra fallet blir densamma, dock lösningen till den antar annorlunda värden för C1 och C2 eftersom villkoren har ändrats när vagnen vänder sig. Men varför ska man inte sätta ut olika tecken för fjäderkraften och friktionskraften i den nya ekvationen?
Varför måste man ha en ny ekvation? Vilka villkor har ändrats?
Som jag tolkar uppgiften lossnar vagnen vid hastighetens extrempunkt och fortsätter på egen hand, åt vänster. Det innebär att hastigheten efter helt enkelt förblir extremvärdet av derivatan,
Jroth skrev:Varför måste man ha en ny ekvation? Vilka villkor har ändrats?
Som jag tolkar uppgiften lossnar vagnen vid hastighetens extrempunkt och fortsätter på egen hand, åt vänster. Det innebär att hastigheten efter helt enkelt förblir extremvärdet av derivatan,
Så här menar jag.
Med y räknat positivt åt höger har vi
, vilket ger
Notera att , vilket innebär att friktionskraften är riktad åt vänster då är större än noll (vagnen rör sig åt höger) och riktad åt höger då är mindre än noll (vagnen rör sig åt vänster). Som sig bör.
Du har definierat y som positiv åt höger. Det innebär att du också definierat (dvs v) och
är negativ då vagnen rör sig åt vänster.
Det innebär att friktionstermen är riktad åt höger då rörelsen sker åt vänster.
Om du plötsligt sätter ett plustecken framför den termen kommer kommer den verka åt fel håll eftersom är negativ.
Den korrekta ekvationen, oavsett åt vilket håll vagnen rör sig, är
Tecknet på derivatan ser till att friktionskraften alltid är motriktad rörelsen.
PATENTERAMERA skrev:Med y räknat positivt åt höger har vi
, vilket ger
Notera att , vilket innebär att friktionskraften är riktad åt vänster då är större än noll (vagnen rör sig åt höger) och riktad åt höger då är mindre än noll (vagnen rör sig åt vänster). Som sig bör.
Tack! Nu är jag med.