43 svar
446 visningar
Katarina149 behöver inte mer hjälp
Katarina149 7151
Postad: 22 feb 2021 09:04 Redigerad: 22 feb 2021 09:36

Största möjliga area

Uppgiften:

En punkt P ligger på grafen till funktionen  y  =  x2   ;    0 < x < 2

Punkten P är ett av hörnen i en rektangel, där en av sidorna ligger på

x axeln och en på linjen x = 2. Bestäm den största möjliga area, som

rektangeln kan ha.


Det enda jag lyckas med är att rita grafen x^2 samt markera punkten P (2,4) i koordinatsystemet . Borde man inte bara ta 2*4? Jg vet att det är fel men jag förstår inte hur jag ska tänka 

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 09:10

Har du verkligen skrivit av uppgiften korrekt? Skall det inte vara

Punkten P är ett av hörnen i en rektangel, där en av sidorna ligger på  y-axeln och en på linjen x = 2. 

Katarina149 7151
Postad: 22 feb 2021 09:16

Ja . Du har rätt . Det ska stå y-axeln och en på linjen x = 2. 

Katarina149 7151
Postad: 22 feb 2021 09:21 Redigerad: 22 feb 2021 09:21

Jag har markerat en punkt på y axeln 

och en annan punkt på x axeln 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:23 Redigerad: 22 feb 2021 09:28

Edit, det är något konstigt med uppgiften.

Kan du ladda upp en bild på den?

Katarina149 7151
Postad: 22 feb 2021 09:25 Redigerad: 22 feb 2021 09:27
Yngve skrev:

Punkten P har inte koordinaterna (2, 4).

Den har koordinaterna (x, x^2), där 0 < x < 2.

Den ligger alltså på parabeln, någonstans mellan origo och punkten (2,4).

Rita in P i figuren och sätt upp uttryck för rektangelns längd och bredd.

Varför ska man räkna med x istället för att x=2? 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:29 Redigerad: 22 feb 2021 09:33

Jag inser nu att det jag skrev inte hänger ihop.

Jag redigerade bort det samtidigt som du svarade.

Det är något konstigt med uppgiften, enligt lydelsen kan inte P vara ett hörn.

Kanske ska det stå att en av rektangelns sidor ligger på x-axeln och att en annan av rektangelns sidor ligger på linjen x = 2? I så fall går det att få ihop det med att P utgör ett hörn i rektangeln.

Kan du ladda upp en bild?

Katarina149 7151
Postad: 22 feb 2021 09:32 Redigerad: 22 feb 2021 09:34

Yngve du har besvarat samma fråga i den här tråden 

https://www.pluggakuten.se/trad/rektangel-32/ 

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 09:34

Lägg upp en bild av uppgiften, så att vi kan se hur den är formulerad. 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:36 Redigerad: 22 feb 2021 09:38

Ja, och där står det att en av rektangelns sidor ligger på x-axeln. Då hänger det ihop. Om det står y-axeln i uppgiften så går det inte att få till en sådan rektangel.

Katarina149 7151
Postad: 22 feb 2021 09:36

Jag har ingen bild men här finns ytterligare en länk till uppgiften där Yngve har löst samma fråga 

https://www.pluggakuten.se/trad/maximal-area-4/ 

Katarina149 7151
Postad: 22 feb 2021 09:37
Yngve skrev:

Ja, och där står det att en av rektangelns sidor ligger på x-axeln. Om det står y-axeln i uppgiften så går det inte att få ihop det.

Jag det stod x axeln från början. Men smaragdena sa att det borde stå y där istället ..

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:37

Jag upprepar, det ska stå x-axeln, inte y-axeln.

Katarina149 7151
Postad: 22 feb 2021 09:38

Ok. x axeln. Hur kommer jag vidare i frågan? Jag har ändrat inlägget så att det står ”x-axeln” istället för ”y-axeln”

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 09:43

På något sätt fick jag det till att en sida skulle vara lika med y = 2 men det stod ju inte så... Om jag hade läst rätt så skulle det ha varit rätt med y-axeln, men nu hade jag dubbelfel.

Rita in en rektangel som har en sida längs x-axeln, en längs linjen x = 2 och ett hörn någonstans på parabeln.

Katarina149 7151
Postad: 22 feb 2021 09:46

Jag förstår inte varför man ska pricka in just dessa punkter? 
Det här ser inte ut att vara en rektangeln 

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 09:49

Välj en punkt p någonstans i den högra delen av parabeln. Rita rektangelsn.

Katarina149 7151
Postad: 22 feb 2021 09:51 Redigerad: 22 feb 2021 09:51

Jag har redan markerat en punkt p på parabeln 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:51 Redigerad: 22 feb 2021 09:52

Nej, du har inte markerat punkten P någonstans. Gör det.

P ska ligga på parabeln någonstans mellan origo och punkten (2,4).

Katarina149 7151
Postad: 22 feb 2021 09:52 Redigerad: 22 feb 2021 09:53

Jag hänger inte med.... Kan vi ta det ett steg i taget :(

Jag förstår inte vart jag ska pricka in punkten p, varför ska jag göra så? Osv. Vill förstå varför jag gör dessa steg

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:54 Redigerad: 22 feb 2021 09:56
Katarina149 skrev:

Jag hänger inte med.... Kan vi ta det ett steg i taget :(

Jag förstår inte vart jag ska pricka in punkten p, varför ska jag göra så? Osv. Vill förstå varför jag gör dessa steg

Steg 1. Markera punkten P någonstans på parabeln.

Orsaken till att du ska göra det är att du ska visualisera uppgiften så att du enklare kan lösa den.

Förslagsvis så här:

Katarina149 7151
Postad: 22 feb 2021 09:56 Redigerad: 22 feb 2021 09:57

Ok . Steg 1 är avklarat . En punkt p ligger på parabeln och är en av hörnsidorna till en rektangeln 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 09:57 Redigerad: 22 feb 2021 09:57

Bra.

Steg 2, rita in linjen x = 2 i bilden.

Du vet att den linjen ska ligga till höger om P.

Katarina149 7151
Postad: 22 feb 2021 09:59 Redigerad: 22 feb 2021 09:59

Hur menar du? Ska jag rita en lodrätlinje 

x=2 som går igenom punkten p?

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 10:00

En lodrät linje, ja.

Men inte på y-axeln utan vid x = 2.

Katarina149 7151
Postad: 22 feb 2021 10:00 Redigerad: 22 feb 2021 10:03

Ska linjen gå igenom punkten p? Varför ska jag rita en lodrätlinje x=2?

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 10:03 Redigerad: 22 feb 2021 10:04

Nej linjen ska inte gå genom punkten P. Linjen ska gå till höger om P.

Du ska rita den eftersom en av rektangelns sidor ligger på den linjen.

Katarina149 7151
Postad: 22 feb 2021 10:11 Redigerad: 22 feb 2021 10:11

Jag förstår inte vad du menar med 

”linjen ska gå till höger om P” . Hur ska jag rita punkten?

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 10:17 Redigerad: 22 feb 2021 10:19

Du har redan ritat in punkten P.

Du ska nu rita en vertikal linje vid x = 2.

Orsaken till att den ska ligga till höger om punkten P är att det i uppgiftslydelsen står att punkten P har en x-koordinat som är mindre än 2.

Det betyder att P ska ligga till vänster om den linjen.

Katarina149 7151
Postad: 22 feb 2021 10:21

Jag förstår inte varför man ska göra på det sättet 

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 10:22

Katarina149 7151
Postad: 22 feb 2021 10:24

Är det arean på den här rektangeln man ska räkna ut? 

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 10:31

Ja, och du skall ta red på vilket x-värde som gör att rektangeln får sitt största värde.

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 10:36 Redigerad: 22 feb 2021 10:53

Orsaken till att du inte förstår varför du ska göra på det sättet är antagligen att du inte förstår uppgiftslydelsen.

Jag skriver därför nu av det som står i uppgiftslydelsen och försöker förklarar vad det betyder.

Vad av följande förstår du inte?

Del 1: En punkt P ligger på grafen till funktionen  y=x2y=x^2  ; 0<x<20 < x < 2.

Det betyder att

  • Det finns en punkt P som ligger någonstans på parabeln.
  • Punktens x-koordinat är större än 0 och mindre än 2.
  • Punkten P ligger någonstans mellan (0,0) och (2,4).

Del 2: Punkten P är ett av hörnen i en rektangel, där en av sidorna ligger på x axeln och en på linjen x = 2.

Det betyder att

  • Det finns en rektangel.
  • Ett av rektangelns hörn ligger i punkten P.
  • En av rektangelns sidor ligger på x-axeln.
  • En annan av rektangelns sidor ligger på linjen x = 2.
  • Linjen x = 2 är en vertikal linje som skär x-axeln vid x = 2.

Del 3: Bestäm den största möjliga area, som

rektangeln kan ha.

Det betyder att

  • Vi ska rita in rektangeln i koordinatsystemet.
  • Utifrån denna bild ska vi bestämma ett uttryck för rektangelns bredd b och höjd h.
  • Rektangelns area A = b*h
  • Arean A är beroenda av var punkten P befinner sig.
  • Vi ska försöka hitta det största värdet som A kan ha.
Katarina149 7151
Postad: 22 feb 2021 11:06

Okej. Vet ej om jag har löst uppgiften rätt. Men så här gjorde jag. 

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 11:24 Redigerad: 22 feb 2021 11:24

Snyggt! Du har löst den rätt.

En kommentar bara. Lösningen x = 0 behöver du inte kontrollera. Du kan förkasta den då den inte ligger i definitionsmängden (vi har ju att 0 < x < 2).

Fråga: Förstod du hela tillvägagångssättet och hur du kan tolka uppgiftslydelsen?

Katarina149 7151
Postad: 22 feb 2021 11:42 Redigerad: 22 feb 2021 11:42

Det är bara en grej som jag är fundersam kring. Vilket är hur man ritar rektangeln. Hur tolkar man med hjälp av textuppggiften hur rektangeln skulle se ut? Det är bara det som förrvirrar mig

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 11:56

Att en sida ligger på x-axeln och en sida ligger på linjen x = 3 innebär att dessa två rektangelsidor är vinkelräta mot varandra,

Det betyder att dessa rektangelsidor måste mötas i ett hörn, eftersom det endast är de parallella rektangelsidorna som aldrig möts.

Det betyder att ett hörn måste ligga i skärningen av dessa linjer, dvs i punkten (2, 0).

Pröva själv att få till de villkoren på något annat sätt, så ser du att det är enda möjligheten.

Att sedan ett hörn ligger vid P innebär att det måste vara det diagonalt motsatta hörnet, eftersom x-koordinaten för P varken kan vara 0 eller 2 och eftersom y-koordinaten för P då varken kan vara 0 eller 4.

Katarina149 7151
Postad: 22 feb 2021 11:59
Yngve skrev:

Att en sida ligger på x-axeln och en sida ligger på linjen x = 3 innebär att dessa två rektangelsidor är vinkelräta mot varandra,

Det betyder att dessa rektangelsidor måste mötas i ett hörn, eftersom det endast är de parallella rektangelsidorna som aldrig möts.

Det betyder att ett hörn måste ligga i skärningen av dessa linjer, dvs i punkten (2, 0).

Pröva själv att få till de villkoren på något annat sätt, så ser du att det är enda möjligheten.

Att sedan ett hörn ligger vid P innebär att det måste vara det diagonalt motsatta hörnet, eftersom x-koordinaten för P varken kan vara 0 eller 2 och eftersom y-koordinaten för P då varken kan vara 0 eller 4.

Kan du förklara det här stycket mer ingående 

”Att sedan ett hörn ligger vid P innebär att det måste vara det diagonalt motsatta hörnet, eftersom x-koordinaten för P varken kan vara 0 eller 2 och eftersom y-koordinaten för P då varken kan vara 0 eller 4.” 
För där förestår jag inte riktgt vad du menar

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 12:06

Kan du förklara det här stycket mer ingående 

”Att sedan ett hörn ligger vid P innebär att det måste vara det diagonalt motsatta hörnet, eftersom x-koordinaten för P varken kan vara 0 eller 2 och eftersom y-koordinaten för P då varken kan vara 0 eller 4.” 
För där förestår jag inte riktgt vad du menar

Blir det tydligare att säga "Att sedan ett hörn ligger vid P innebär att det måste vara det diagonalt motsatta hörnet till hörnet (2,0)..."

Yngve 40266 – Livehjälpare
Postad: 22 feb 2021 12:08 Redigerad: 22 feb 2021 12:09

Du har hittat ett hörn vid (2, 0).

Nu är det tre hörn kvar.

  • Ett av dessa hörn måste ligga på linjen x = 3. Då kan det hörnet inte vara P.
  • Ett annat av dessa måste ligga på x-axeln. Då kan inte heller det hörnet vara P.
  • Alltså måste det tredje hörnet, dvs det som ligger diagonalt motsatt (2,0), vara P.
Katarina149 7151
Postad: 22 feb 2021 13:23

Varför ska man dra en horisontell linje från punkt P mot den lodräta linjen x=2?

Smaragdalena 80504 – Avstängd
Postad: 22 feb 2021 13:37
Katarina149 skrev:

Varför ska man dra en horisontell linje från punkt P mot den lodräta linjen x=2?

För att det skall bli en rektangel.

Katarina149 7151
Postad: 22 feb 2021 13:40 Redigerad: 22 feb 2021 13:40
Yngve skrev:

Du har hittat ett hörn vid (2, 0).

Nu är det tre hörn kvar.

  • Ett av dessa hörn måste ligga på linjen x = 3. Då kan det hörnet inte vara P.
  • Ett annat av dessa måste ligga på x-axeln. Då kan inte heller det hörnet vara P.
  • Alltså måste det tredje hörnet, dvs det som ligger diagonalt motsatt (2,0), vara P.

ok nu känns det som att jag har börjat förstå. Men för att vara 100% säker vill jag gärna lösa en liknande uppgift. Kan ni hitta på en uppgift? eller finns det ngn liknande som jag kan få lösa?

Svara
Close