14 svar
1471 visningar
hjalpmedfysik behöver inte mer hjälp
hjalpmedfysik 160 – Avstängd
Postad: 25 nov 2018 23:54

Standardavvikelse

En fiskare upptäcker att torsken han fångar är normalfördelade med medelvärdet 12 kg och standardavvikelsen 2 kg. En vecka fångar har 3000 torskar. Hur många torskar väger mindre än 8 kg?

Hur ska jag börja för att kunna lösa denna uppgift?

Jonto 9632 – Moderator
Postad: 25 nov 2018 23:59

8 kgs vit betyder att det ligger 2 standardavvikelser bort från medelvärdet. Eftersom 12-2 standardavvikelser =12-(2*2)=8.

Du behöver alltså ta reda på hur många procent av fiskarna som ligger mer än 2 standardavvikelser under medelvärdet. Där får du hjälp av normalfördelningen. Har du koll på hur den kurvan ser ut och hur man tittar hur stor andel av normalfördelat material som ligger inom vilka standardavvikelser, annars sök upp det.

Teraeagle 21051 – Moderator
Postad: 25 nov 2018 23:59 Redigerad: 26 nov 2018 00:05

En torsk på 8 kg ligger två standardavvikelser bort från väntevärdet 12 kg. Hur stor är sannolikheten att man ska få ett värde som är mer än två standardavvikelser mindre än det förväntade 12 kg?

hjalpmedfysik 160 – Avstängd
Postad: 26 nov 2018 00:05
Jonto skrev:

8 kgs vit betyder att det ligger 2 standardavvikelser bort från medelvärdet. Eftersom 12-2 standardavvikelser =12-(2*2)=8.

Du behöver alltså ta reda på hur många procent av fiskarna som ligger mer än 2 standardavvikelser under medelvärdet. Där får du hjälp av normalfördelningen. Har du koll på hur den kurvan ser ut och hur man tittar hur stor andel av normalfördelat material som ligger inom vilka standardavvikelser, annars sök upp det.

 2 standardavvikelse på kurvan är medelvärde+2o (standardavvikelse, vet ej hur man gör tecknet). och sen står det "Ca 95,4% finns i intervallet medelvärde +/- 2 standardavvikelse. 95,4% av 3000 = 2862 fiskar. Stämmer detta?

Teraeagle 21051 – Moderator
Postad: 26 nov 2018 00:08

Nej, det är inte rätt. Om du studerar den sista figuren i mitt inlägg så är du ute efter den vita ”svansen” till vänster. Den delen anger sannolikheten att få en torsk som väger mindre än 8 kg. För att räkna ut hur stor sannolikhet den motsvarar så måste du utnyttja att arean under hela kurvan är 100 % och att den är symmetrisk runt väntevärdet.

hjalpmedfysik 160 – Avstängd
Postad: 26 nov 2018 00:08
Teraeagle skrev:

En torsk på 8 kg ligger två standardavvikelser bort från väntevärdet 12 kg. Hur stor är sannolikheten att man ska få ett värde som är mer än två standardavvikelser mindre än det förväntade 12 kg?

 så 95% av fiskarna (2862) väger mindre än 8kg, stämmer det?

Jonto 9632 – Moderator
Postad: 26 nov 2018 00:10

Nej 95 % av fiskarna ligger inom gränsen +- 2 standardavvikelser från 10 kg alltså mellan 8-12.

Du ska titta på de som ligger i det vita området som är under -2 stanradavvikelser.

hjalpmedfysik 160 – Avstängd
Postad: 26 nov 2018 00:13
Teraeagle skrev:

Nej, det är inte rätt. Om du studerar den sista figuren i mitt inlägg så är du ute efter den vita ”svansen” till vänster. Den delen anger sannolikheten att få en torsk som väger mindre än 8 kg. För att räkna ut hur stor sannolikhet den motsvarar så måste du utnyttja att arean under hela kurvan är 100 % och att den är symmetrisk runt väntevärdet.

 Vita svansen av figuren är 5%. Så 5% av fiskarna (150) väger mindre än 8kg. Nu måste det väl stämma?

Jonto 9632 – Moderator
Postad: 26 nov 2018 00:13

Jonto 9632 – Moderator
Postad: 26 nov 2018 00:14

Nej båda de vita bitarna tillsammans är 5 %. Du är bara intrsserad av de som ligger unde 8 kg, inte de som ligger över 12 kg. Utnyttja dock att normalfördelningen är symmetrisk

Jonto 9632 – Moderator
Postad: 26 nov 2018 00:15

Symmetrisk betyder att den ser likadan ut på båda sidor av mittlinjen. Det vill säga de vita områdena är lika stora.

hjalpmedfysik 160 – Avstängd
Postad: 26 nov 2018 00:15
Jonto skrev:

Nej båda de vita bitarna tillsammans är 5 %. Du är bara intrsserad av de som ligger unde 8 kg, inte de som ligger över 12 kg. Utnyttja dock att normalfördelningen är symmetrisk

 2,5% nu fan måste det vara rätt?!?!?

Jonto 9632 – Moderator
Postad: 26 nov 2018 00:15

2,5 % av fiskarna ligger under 8 kg. Ja det stämmer

hjalpmedfysik 160 – Avstängd
Postad: 26 nov 2018 00:16
Jonto skrev:

2,5 % av fiskarna ligger under 8 kg. Ja det stämmer

 hahhaha tack som fan för hjälpen!!

Albiki 5096 – Fd. Medlem
Postad: 26 nov 2018 00:17
hjalpmedfysik skrev:
Teraeagle skrev:

Nej, det är inte rätt. Om du studerar den sista figuren i mitt inlägg så är du ute efter den vita ”svansen” till vänster. Den delen anger sannolikheten att få en torsk som väger mindre än 8 kg. För att räkna ut hur stor sannolikhet den motsvarar så måste du utnyttja att arean under hela kurvan är 100 % och att den är symmetrisk runt väntevärdet.

 Vita svansen av figuren är 5%. Så 5% av fiskarna (150) väger mindre än 8kg. Nu måste det väl stämma?

 Tillsammans utgör de vita svansarna 5 procent. 

Svara
Close