Ställa upp en differentialekvation
Behöver hjälp med denna jättetrevliga uppgiften.
Första dagen på ett nytt år öppnar Pelle ett bankkonto och sätter in 1000 kr. Därefter sätter han in 200 kr på kontot i början på varje månad. Årsräntan är 6% och beräknas varje månad. Hur mycket pengar har Pelle på kontot exakt 4 år efter att han öppnade kontot? Ställ upp en för problemet lämplig differensekvation och lös denna.
All hjälp uppskattas.
Du kan beskriva kapitalet y vid tiden t som y(t).
Förändringen per tidsenhet (inkomst/utgift) är då y'(t).
Vad har du för inkomster?
Startkapitalet är ju 1000kr och "inkomsten" är ju dem 200kr som han lägger in varje månad om det är det du menar.
Ja, en del av "inkomsten" är 200 kr/mån. Vad är den andra delen?
Det är bekvämast att använda månad som tidsenhet här.
Hur skriver du "kapitalet ökar med 200 kr/månad" i differentialekvationen?
Är det med hjälp av en exponentialfunktion? Typ 1000 + 200^x eller något liknande? Har precis börjat plugga och var ett tag sen man höll på med matte.
Den här räntan ger följande bidrag:
y ökar med 200 per tidsenhet
Det skriver vi i ekvationen som:
dy/dt är 200
Men det är bara ett bidrag. Vilken är din andra "inkomst" och hur stor är den?
Räntan varje år. Skriver man inte det som e^0.06x?
Nej, inte riktigt.
Räntan är 0.06 gånger det kapital man har, varje år. Om vi räknar som ekonomerna, så får man en tolftedel av det varje månad. Vi har alltså en inkomst varje månad som är 0.005 gånger det kapital vi har.
Kapitalet ökar med (kapitalet gånger 0.005) per månad.
Kommer du vidare nu ?