14 svar
696 visningar
Spirit 6 – Fd. Medlem
Postad: 29 mar 2019 19:39

Speciella relativitetsteorin!

Den oss närmaste stjärnan är Proxima Centauri på 4,3 ljusårs avstånd. Det tar alltså ljuset 4,3 år attfärdas denna sträcka.Vilken hastighet skulle ett rymdskepp behöva ha om detendast skulle ta 2 år för besättningen att komma dit?

 

Förstår inte, vet inte vad ska börja först. Hjälp! 

Jag vet bara att man ska använd tidsdilatation formeln men efter det vet inte.

Smaragdalena 80504 – Avstängd
Postad: 29 mar 2019 20:22

Hur ser formeln för tisdilation ut?

Spirit 6 – Fd. Medlem
Postad: 29 mar 2019 20:26

Smaragdalena 80504 – Avstängd
Postad: 29 mar 2019 20:39

Stämmer. Nu är det svåra att avgöra vilken tid som skall vara 4,3 och vilken som skall vara 2 (år).

Rotuttrycket i nämnaren, är det större eller mindre än 1?

Sillen123 5 – Fd. Medlem
Postad: 31 okt 2020 08:52

Jag fick exakt denna fråga i ett prov förra veckan men grubblar fortfarande på den.

Tiden på jorden är t

Tiden astronauterna ska uppfatta kallar jag t_0 och avståndet dom ska åka är 4.3 ljusår.

T_0 = 63115200 s

4.3 ljusårs = s_0v 

Jag får inte till det med astronauternas hastighet, den blir alltid större än ljusets hastighet vilket gör att formeln för tidsalitation inte går ihop. 

 

Någon som har tips på hur jag ska tänka?

Sillen123 5 – Fd. Medlem
Postad: 31 okt 2020 09:46

4.3 ljusår = t_0v såklart

Smaragdalena 80504 – Avstängd
Postad: 31 okt 2020 10:09

Jag tror att det är meningen att man skall svara att det går inte, eftersom ingenting kan röra sig fortare än ljusets hastighet.

Laguna Online 30711
Postad: 31 okt 2020 10:35

Eller så menar man att det går två år i rymdskeppet.

Sillen123 5 – Fd. Medlem
Postad: 31 okt 2020 12:39

Sillen123 5 – Fd. Medlem
Postad: 31 okt 2020 12:46

Jag hittade denna lösning i en gammal tråd, men jag kan inte för mitt liv komma fram till det själv.

Om skeppet inte åker fortare än ljuset så kan alltså avståndet inte vara 4.3 ljusår, utan som störst 2 ljusår.

Jag tänker att 4.3 ljusår är det avstånd en observatör på jorden har uppskattat, som därför borde vara (c×t/2)^2 enligt härledningen till formeln. Men för att ta sig denna sträcka behöver skeppet ändå åka snabbare än ljuset för att sig dit. Känner mig dummare ju längre jag tänker på detta, för svaret stämmer i den bifogade bilden men jag kommer inte fram till hur dom bar sig åt.

Dr. G 9500
Postad: 31 okt 2020 14:21

Det är lite lurigt, men det kan ta kortare än 4.3 år (mätt för personerna på rymdskeppet) att färdas sträckan som är 4.3 ljusår för en observatör på jorden. 

(Tipset om att ha som vana att alltid omvandla till SI-enheter ska tas med en stor nypa salt. Här är det helt onödigt att omvandla 2 år till sekunder.)

Sillen123 5 – Fd. Medlem
Postad: 31 okt 2020 15:04

Ja precis, åskådare betraktar hypotenusan och skeppet färdas vinkelrätt mot stjärnan, i en vinkelrät triangel åker skeppet då längst med den motstående katetern och således upplevs tiden längre för betraktaren, men avståndet är ju detsamma. Närliggande katet är v ×t och Pythagoras sats ger oss formeln ovan. Jag lyckas inte lösa ut hastigheten. Delar jag avståndet till stjärnan med tiden det tar för skeppet att komma dit, dvs 2 år, får jag att det för betraktaren tar 4.75 år för betraktaren. Men sen kommer jag inte längre.

Laguna Online 30711
Postad: 31 okt 2020 15:22

Jag ser inte var en hypotenusa kommer in i bilden. 

Jroth 1191 – Fd. Medlem
Postad: 31 okt 2020 17:27 Redigerad: 31 okt 2020 17:30

Ni har säkert fått lära er ett samband mellan förfluten tid i två olika referenssystem, ungefär så här

t=γt't=\gamma t^{'}

Där γ=11-v2c2\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}.

Eftersom t=xvt=\frac{x}{v} där xx där sträckan 4.3 ljusår och vv är hastigheten som skiljer systemen åt kan formeln ovan också skrivas

xv=γt'\frac{x}{v}=\gamma t^{'}

Sätter vi in t't^{'} 2 år samt xx 4.3 ljusår och kommer ihåg att v=xtv=\frac{x}{t} (med normalisering c=1c=1) ger ekvationen x=γvt'x=\gamma v t^{'} således

4.3=2v1-v24.3=\frac{2v}{\sqrt{1-v^2}}

Som har lösningen

v=4322490.91cv=\frac{43}{\sqrt{2249}}\approx 0.91c

SaintVenant 3956
Postad: 31 okt 2020 17:35 Redigerad: 31 okt 2020 17:35

Du har att:

t0=t1-v2c2\displaystyle t_{0} = t\sqrt{1-\dfrac{v^{2}}{c^{2}}}

Du har att:

s=v·t  t=svs=v\cdot t \ \Leftrightarrow \ t = \dfrac{s}{v}

Denna tid är alltså tiden som förlöper på jorden under resan. Du får:

t0=sv·1-v2c2\displaystyle t_{0}=\dfrac{s}{v} \cdot \sqrt{1-\dfrac{v^{2}}{c^{2}}}

Du kan nu bestämma hastigheten genom att ansätta t0=2t_{0}=2 och s=4.3·cs=4.3\cdot c.

Svara
Close