17 svar
1180 visningar
scarface 91
Postad: 7 okt 2017 17:42

Speciella ekvationssystem.

För vilka värden på talet a har ekvationssystemet

 

{4x−2y=5

ay−6x=−1,5

en enda lösning?

a ≠ 

Betyder ≠ att det ska vara olika?

Har förenklat det så det blir 

{y=2x-2,5

y=6x/a - 1,5/a 

Vet att ekvationsystemet har en lösning när k värdarna är olika. Nu då?

Affe Jkpg 6630
Postad: 7 okt 2017 18:55

Vad händer om du "eliminerar" x
1: +12x- 6y =15
2: -12x+2ay=-3
1 - 2 ...

Smaragdalena 80504 – Avstängd
Postad: 7 okt 2017 18:56

Vad händer med antalet lösningar till ekvationssystemet om

a) k1 = k2 och m1 = m2?      

b)  k1 = k2 men m1 inte är lika med m2?

Affe Jkpg 6630
Postad: 7 okt 2017 22:57
Smaragdalena skrev :

Vad händer med antalet lösningar till ekvationssystemet om

a) k1 = k2 och m1 = m2?      

b)  k1 = k2 men m1 inte är lika med m2?

Jaha 1-2 ... va inte roligt?
Jag tycker väl i så fall att det är enklare att formulerade det som:
y=k1x+m1
y=k2x+m2

Vad händer när k1=k2?...åsså som vanligt...rita :-)

Albiki 5096 – Fd. Medlem
Postad: 8 okt 2017 09:01

Hej!

Multiplicera ekvation (1) med talet 6, och multiplicera ekvation (2) med talet 4. Då får du ekvationerna 

    24x-12y=30 24x - 12y = 30

och

    -24x+4ay=-6. -24x + 4ay = -6.

Addera de två ekvationerna för att få ekvationen

    (4a-12)y=24. (4a-12)y = 24.

Är det möjligt att talet 4a-12 4a-12 är lika med noll? Varför spelar det någon roll om 4a-12 4a-12 är lika med noll?

Albiki

Yngve Online 40566 – Livehjälpare
Postad: 8 okt 2017 10:48 Redigerad: 8 okt 2017 10:49
scarface skrev :

a ≠ 

Betyder ≠ att det ska vara olika?

Ja, tecknet betyde "skilt från", dvs "ej lika med"

Har förenklat det så det blir 

{y=2x-2,5

y=6x/a - 1,5/a 

Vet att ekvationsystemet har en lösning när k värdarna är olika. Nu då?

Jättebra. Du är nästan framme. Jag tycker inte att vi behöver krångla till det i onödan.

Du har skrivit sambanden på formen y = k*x + m och vill nu jämföra sambandens "k-värden":

  • y = 2*x - 2,5. Vad har k för värde här?
  • y = (6/a)*x - 1,5/a. Vad har k för värde här?

Vad måste gälla för att de två k-värdena ska vara olika?

scarface 91
Postad: 8 okt 2017 17:49
Yngve skrev :
scarface skrev :

a ≠ 

Betyder ≠ att det ska vara olika?

Ja, tecknet betyde "skilt från", dvs "ej lika med"

Har förenklat det så det blir 

{y=2x-2,5

y=6x/a - 1,5/a 

Vet att ekvationsystemet har en lösning när k värdarna är olika. Nu då?

Jättebra. Du är nästan framme. Jag tycker inte att vi behöver krångla till det i onödan.

Du har skrivit sambanden på formen y = k*x + m och vill nu jämföra sambandens "k-värden":

  • y = 2*x - 2,5. Vad har k för värde här?
  • y = (6/a)*x - 1,5/a. Vad har k för värde här?

Vad måste gälla för att de två k-värdena ska vara olika?

1 är väl k värdet 2

2 hur ska jag göra där förstår inte hur du har räknat?

Yngve Online 40566 – Livehjälpare
Postad: 8 okt 2017 18:49 Redigerad: 8 okt 2017 18:50
scarface skrev :
Yngve skrev :

Jättebra. Du är nästan framme. Jag tycker inte att vi behöver krångla till det i onödan.

Du har skrivit sambanden på formen y = k*x + m och vill nu jämföra sambandens "k-värden":

  • y = 2*x - 2,5. Vad har k för värde här?
  • y = (6/a)*x - 1,5/a. Vad har k för värde här?

Vad måste gälla för att de två k-värdena ska vara olika?

1 är väl k värdet 2

Ja.

2 hur ska jag göra där förstår inte hur du har räknat?

k-värdet är den faktor som är multiplicerad med x i sambandet y = k*x + m

Om y = 2*x + 1 så är k-värdet 2

Om y = 10*x + 1 så är k-värdet 10

Om y = (-3)*x + 1 så är k-värdet -3

Om y = (2/3)*x + 1 så är k-värdet 2/3

Ditt samband lyder y = (6/a)*x - 1,5/a. Vad är då k-värdet?

scarface 91
Postad: 9 okt 2017 16:55

6/a?

Smaragdalena 80504 – Avstängd
Postad: 9 okt 2017 17:03 Redigerad: 9 okt 2017 17:12

Ja, när k = 2 = 6/a har de båda linjerna samma lutning, så antingen är de båda linjerna parallella (och saknar gemensamma punkter) eller så är de identiska. I båda fallen är det så att den inte har EN enda lösning.

scarface 91
Postad: 9 okt 2017 17:09

Vad ska jag göra sen?

scarface skrev :

6/a?

Ja!

Det ena k-värdet är 2, det andra k-värdet är 6/a.

Om dessa två k-värden är olika stora så har ekvationssystemet en enda lösning.

Kan du beskriva den situationen (att dessa värden är olika stora) med en matematisk formel?

Du kan då använda symbolen 

scarface 91
Postad: 9 okt 2017 20:22

2=6/a?

Smaragdalena 80504 – Avstängd
Postad: 9 okt 2017 20:40

Ja, Vad har då konstanten a för värde?

scarface 91
Postad: 9 okt 2017 20:41

a=3

Varför ska man ta k1=k2??

Affe Jkpg 6630
Postad: 9 okt 2017 20:46
scarface skrev :

a=3

Varför ska man ta k1=k2??

y=k1x+m1
y=k2x+m2
Vad händer när k1=k2?...som vanligt...rita :-)

scarface skrev :

a=3

Varför ska man ta k1=k2??

Du har ju själv skrivit det i trådstarten (fetmarkerat nedan):

scarface skrev :

För vilka värden på talet a har ekvationssystemet

 

{4x−2y=5

ay−6x=−1,5

en enda lösning?

a ≠ 

Betyder ≠ att det ska vara olika?

Har förenklat det så det blir 

{y=2x-2,5

y=6x/a - 1,5/a 

Vet att ekvationsystemet har en lösning när k värdarna är olika. Nu då?

Bubo 7418
Postad: 9 okt 2017 20:52

Kommer du ihåg räta linjens ekvation y = kx+m ?

Ett sådant samband mellan y-värden och x-värden gäller för alla punkter på en viss linje.

Om du ritar i ett koordinatsystem, så ser du att om du ritar två linjer så kommer de att korsa varandra. Du kan rita dem NÄSTAN hur du vill, de kommer ändå att korsa varandra i en punkt. För den punkten gäller att x- och y-värdena uppfyller sambandet för den första linjen OCH för den andra linjen.

Du kan alltså hitta x och y så att 4x−2y=5 OCH ay−6x=−1,5 för nästan vilket värde som helst på a.

Enda sättet att rita två linjer som inte korsar varandra, är att rita parallella linjer, alltså linjer som lutar EXAKT lika mycket. Det enda a-värde som gör att 4x−2y=5 OCH ay−6x=−1,5 inte kan gälla samtidigt, är det a-värde som gör linjerna parallella.

Svara
Close