Speciell relativitetsteori
Hej, har fastnat på dessa frågor och skulle bli tacksam för hjälp!
Alpha Centauri är den stjärna som, näst efter solen, ligger närmast jorden. Avståndet är 4,3 ljusår.
a) Hur lång tid tar det, enligt astronauten, att resa dit om rymdraketen kan åka med 30 % av ljushastigheten?
b) Hur snabb måste rymdraketen vara om astronauten ska hinna fram på 10 år, enligt sin egen tidmätning?
I uppgift a) kom jag fram till att man kan använda sig av formeln för Längdkontraktion där . Dock har jag svårt med att förstå skillnaden mellan l0/t0 och l/t. Jag har fått lära mig att l0/to är "egentid", men när jag tänker på det viset får jag fel svar.
I uppgift b) har jag ganska svårt med att fortsätta.
Säg att tiden det tar för ljuset att nå Alpha Centauri är t (4,3 år i problemet) sett i en referensram där jorden och stjärnan är i vila.
Avståndet till stjärnan är då l0 = ct, sett i ovan nämnda referensram.
Antag att astronauten har hastigheten v, relativt ovan nämnda referensram. Avståndet l till stjärnan sett från astronautens horisont är då längdkontraherat. Därför gäller det att
l = = = ct.
Vidare, om resan tar tiden t0 för astronauten, så gäller det att l = vt0. Vi har därför att
vt0 = c (1).
I a) vet vi att v = 0,3c, vilket vi kan sätta in i ekvationen ovan
0,3ct0 = ct, vilket ger
t0 = t = 14 år.
På b) kan du återigen använda ekvation (1), men nu är t och t0 kända och du skall räkna ut v.