16 svar
245 visningar
Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 19:58

skriv ner en bijektion från mängderna (diskret matematik)

hur tacklar man denna?

jag vet att en bijektion är en funktion som är både surjektiv och injektiv och varje element har en avbildning men förstår inte riktigt vad det är jag ska räkna på här? ska jag skriva ihop en egen mängd och testa med några n eller förstår inte riktigt vad jag ska göra

ledtrådar?

Smutsmunnen 1050
Postad: 31 mar 2020 20:08

Nej du ska ange en bijektion från A till B.

Skriv upp några element i A och några i B så kanske det klarnar.

Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 20:11
Smutsmunnen skrev:

Nej du ska ange en bijektion från A till B.

Skriv upp några element i A och några i B så kanske det klarnar.

A ={8, 16, 32}

B={2, 4, 6, 8, 10}

förstår inte vad jag ska göra nu

Smutsmunnen 1050
Postad: 31 mar 2020 20:15

I A har du hoppat över ett element, ska vara 8,16,24,32.

Kan du hitta någon naturlig funktion spm tar 2 till 8, 4 till 16, 6 till 24, 8 till 32?

Maremare 1044 – Fd. Medlem
Postad: 31 mar 2020 20:20
Smutsmunnen skrev:

I A har du hoppat över ett element, ska vara 8,16,24,32.

Kan du hitta någon naturlig funktion spm tar 2 till 8, 4 till 16, 6 till 24, 8 till 32?

okej så man får inte välja fritt för ett godtyckligt n utan måste det vara stegvis? tänkte på att jag "missat" ett element i A

Smutsmunnen 1050
Postad: 31 mar 2020 21:08
Maremare skrev:
Smutsmunnen skrev:

I A har du hoppat över ett element, ska vara 8,16,24,32.

Kan du hitta någon naturlig funktion spm tar 2 till 8, 4 till 16, 6 till 24, 8 till 32?

okej så man får inte välja fritt för ett godtyckligt n utan måste det vara stegvis? tänkte på att jag "missat" ett element i A

Du kan välja fritt. Däremot, eftersom båda är definierade genom Z, så hittar du nog lättast en naturlig bijektion mellan dem om du faktiskt ser dem i relation till Z.

Laguna Online 30496
Postad: 31 mar 2020 21:12

Egentligen är mängderna oändligt stora.

Du ska ange en funktion f som avbildar varje element i A på något element i B. Den ska ha en invers så du kan avbilda från B till A också.

En bijektion parar ihop element från båda mängderna. Du kan göra den hur komplicerad som helst, men det finns ganska enkla funktioner.

PATENTERAMERA 5989
Postad: 1 apr 2020 01:21

A = alla heltal som är jämnt delbara med 8.

B = alla heltal som är jämnt delbara med 2.

Ett exempel på en funktion från A till B skulle kunna vara

f: A  B, n  f(n) = n/2.

Är denna funktion injektiv? Antag att vi har två värden n1 och n2 i A sådana f(n1) = f(n2), då gäller n1/2 = n2/2  n1 = n2, så f är injektiv.

Är f surjektiv? Nej, tyvärr inte. Till exempel så ligger 2 i B, men det finns inget n i A sådant f(n) = 2. Mer generellt så inser vi att Vf = f(A) = alla heltal som är jämnt delbara med 4.

Var nu klurigare än jag var och hitta en funktion som är både injektiv och surjektiv.

Maremare 1044 – Fd. Medlem
Postad: 1 apr 2020 10:06
PATENTERAMERA skrev:

A = alla heltal som är jämnt delbara med 8.

B = alla heltal som är jämnt delbara med 2.

Ett exempel på en funktion från A till B skulle kunna vara

f: A  B, n  f(n) = n/2.

Är denna funktion injektiv? Antag att vi har två värden n1 och n2 i A sådana f(n1) = f(n2), då gäller n1/2 = n2/2  n1 = n2, så f är injektiv.

Är f surjektiv? Nej, tyvärr inte. Till exempel så ligger 2 i B, men det finns inget n i A sådant f(n) = 2. Mer generellt så inser vi att Vf = f(A) = alla heltal som är jämnt delbara med 4.

Var nu klurigare än jag var och hitta en funktion som är både injektiv och surjektiv.

hur kom du fram till f: A → B, n ↦ f(n) = n/2. att det är just n/2 ?

är det för att B är delbart med 2 och då blir A automatiskt delbart med 2 så 2 passar?

Smaragdalena 80504 – Avstängd
Postad: 1 apr 2020 10:32

Det var en (avsiktligt felaktig) gissning för att hjälpa dig vidare.

Laguna Online 30496
Postad: 2 apr 2020 12:48

Kan du se nåt enkelt samband mellan talen i A och talen i B, när du tittar på de första elementen? 

PATENTERAMERA 5989
Postad: 2 apr 2020 15:24

..., -8, 0, 8, 16, ...

..., -2, 0, 2, 4, ...

PATENTERAMERA 5989
Postad: 4 apr 2020 01:42

Vad sägs om funktionen

g: A  B, n  g(n) = n/4?

Är det en bijektion?

Maremare 1044 – Fd. Medlem
Postad: 4 apr 2020 17:46
PATENTERAMERA skrev:

Vad sägs om funktionen

g: A  B, n  g(n) = n/4?

Är det en bijektion?

ja men den borde väl också vara en bijektion?

PATENTERAMERA 5989
Postad: 4 apr 2020 17:48

Hur vet du det?

Maremare 1044 – Fd. Medlem
Postad: 5 apr 2020 20:50
PATENTERAMERA skrev:

Hur vet du det?

för 4 går att dela med 2 och 8 går dela på 4 ?

PATENTERAMERA 5989
Postad: 5 apr 2020 21:04

Och på vilket sätt visar det att g är en bijektion? Kan du göra ditt resonemang lite tydligare. Har lite svårt att följa tankegången.

Normalt sätt brukar man dela upp det i två steg:

  • Visa att g är en injektion.
  • Visa att g är surjektion.

Kan du förklara hur du kommer fram till att g är injektiv och surjektiv?

Svara
Close