Skissa graf
Jag ska skissa grafen till
Jag är med på hur jag ska gå tillväga ända fram till sista steget när jag ska göra en värdetabell.
x=0 f(x)=-1
x=3 f(x)=ln4+1/2
f(x)=
f(x)=
f(x)=
f(x)=
Om man kollar på så tänker jag att jag kan tänka att detta är som -0,99.
Därefter tänker jag att det då blir ln"nästan 0 på den positiva sidan"+1/"nästan -2". Efter detta fastnar jag på hur jag ska komma vidare till det facit säger, vilket är
Vad ser du om du jämför:
med
Eller -0,9999999999
Den första termen kommer bli mer och mer negativ medan den andra terman bara blir närmare -1/2.
Kan du beskriva det mer 'matematiskt'?
Jag ser att ln kommer gå åt 0 desto närmare x går åt 1. Ska jag då tänka denna som ln0, dvs inget värde alls?
Ser även att den andra termen närmare sig -1/2, men förstår inte riktigt hur det det kan bli
Hej,
- Logaritmfunktionen är strängt växande från till då argumentet växer från till .
- Den reciproka funktionen är strängt avtagande från till då argumentet växer från till .
- Den reciproka funktionen är strängt avtagande från till då argumentet växer från till .
Albiki skrev:Hej,
- Logaritmfunktionen är strängt växande från till då argumentet växer från till .
- Den reciproka funktionen är strängt avtagande från till då argumentet växer från till .
- Den reciproka funktionen är strängt avtagande från till då argumentet växer från till .
Jag förstår inte riktigt vad du menar.
Förstår du Albikis första punkt?
"Den reciproka funktionen" syftar till .
Den första punkten tolkar jag som;
Så länge x går mot kommer ln bli positiv, dvs växande.
Om x går mot kommer ln bli negativt, dvs avtagande.
Aaa exakt, men du måste vara försiktig att säga så för att x inte är definierad efter -1. Huvudsaken är i alla fall att ln(1+x) inte "svänger" dvs den blir bara större, eller den blir bara mindre, beroende på vilket håll vi går.