5 svar
95 visningar
LinalgTenta 37
Postad: 30 jul 2023 17:58

Skala varians

Hej,

Om man har att standardavvikelse för en buss är roten ur 0.61 dvs varians är 0.61. Kan man då för 130 bussar ta

0.61*130 för att få fram variansen för 130 bussar?

Borde jag inte få samma svar om jag använder formeln för att ta fram varians med Expected value?

Är specifikt för ovanstående fråga jag undrar!

 

Tack på förhand

Dr. G 9479
Postad: 30 jul 2023 23:56

Ja. 

Du kan approximera det totala antalet reparationer som normalfördelat (med vänteväde och varians som du kan räkna ut), se centrala gränsvärdessatsen. 

LinalgTenta 37
Postad: 31 jul 2023 01:01

Okej men det som är sjukt konstigt att om jag använder normalfördelning N(väntevärde.., roten ur 0.61) och slår in på miniräknaren mellan 100 och 120, så får facit "0", genom att använda Z-värden. Men jag får 6% på miniräknaren när jag gör exakt med miniräknaren utan att göra med Z-värden.

Var tänker jag fel?

Dr. G 9479
Postad: 1 aug 2023 09:51

Z-värden?

Vilken standardavvikelse använder du för summan?

Hondel 1377
Postad: 1 aug 2023 10:13 Redigerad: 1 aug 2023 10:14
LinalgTenta skrev:

Okej men det som är sjukt konstigt att om jag använder normalfördelning N(väntevärde.., roten ur 0.61) och slår in på miniräknaren mellan 100 och 120, så får facit "0", genom att använda Z-värden. Men jag får 6% på miniräknaren när jag gör exakt med miniräknaren utan att göra med Z-värden.

Var tänker jag fel?

Som jag skrev i din andra tråd, det är medelvärdet som efterfrågas. Vi kan beräkna variansen av medelvärdet som V((X1+X2+…Xn)/n)=nV(X)/n^2=V(X)/n, så standardavvikelsen för medelvärdet ör alltså std(X)/sqrt(n). Här har jag använt V(X) och std(X) som variansen respektive standardavvikelsen som alla Xi har (0.61 och roten ur 0.61)

Alltså, när du stoppar in i räknaren är det inte roten ur 0,61 du ska använda som standardavvikels, utan roten av 0.61 genom roten av antalet bussar, dvs roten av 130.

Hondel 1377
Postad: 1 aug 2023 10:24

Vet inte hur tydligt det där blev, men standardavvikelsen för en enda buss är roten ur 0.61. Men det är sannolikheten för medlevärdet av 130 bussar du ska räkna på. Och standardavvikelsen för medlevärdet av 130 bussar är roten ur 0.61 genom roten ur 130 (alltså generellt gäller att det är standardavvikelsen för en individuell datasampel genom roten av antalet sampel)

Svara
Close