31 svar
138 visningar
Somm behöver inte mer hjälp
Somm 160 – Fd. Medlem
Postad: 7 maj 2021 10:10

Ska jag använda mig av koordinatgeometri?

Frågan lyder;

de tre räta linjerna 3x - 4y + 7 = 0 och 8x - 3y + 11 = 0 samt 7x - 17y + 139 = 0 begränsar tillsammans en triangel.


Beräkna triangelns area.

 

Jag vet inte ens vart jag ska börja här? Ska man beräkna vad y blir eller?

 

Mvh Somm

Arktos 4381
Postad: 7 maj 2021 10:16

Du kan börja med att rita upp de tre linjerna i ett koordinatsystem, så du kan se hur triangeln ser ut.

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 10:20

Jag gjorde det på GeoGebra och vet tyvärr inte vart jag ska beräkna arean i.

Är det bara att ta basen*höjden/2 ? Är helt ute och cyklar känns det som..

 

Mvh Somm

joculator 5289 – F.d. Moderator
Postad: 7 maj 2021 10:50

Man kan beräkan arean med  Basen*höjden/2    det görs genaom att använda avståndsformeln för att få fram B och h.
Vilken linje har du valt som bas-linje?  Hur lång är den del av linjen som ingår i triangeln?

Se om du kan ladda upp din figur.

Laguna Online 30484
Postad: 7 maj 2021 10:51

Vilka är de tre hörnen?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 10:54

Ber om ursäkt men vet verkligen inte vart jag ska börja ifrån? Ska jag börja med att beräkna y-värdet för ekvationerna?

joculator 5289 – F.d. Moderator
Postad: 7 maj 2021 11:03

Du kan börja som Laguna skriver med att ta fram hörnen.
Du har 3 ekvationer:
ekv1:   3x - 4y + 7 = 0   
ekv2:   8x - 3y + 11 = 0
ekv3:   7x - 17y + 139 = 0
Skriv om dem på normalformen för linjer    y=kx+m

ekv1:   3x - 4y + 7 = 0      ->   y=3x/4 + 7/4
ekv2:   8x - 3y + 11 = 0     ->    ?
ekv3:   7x - 17y + 139 = 0    ->    ?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 11:42

Ekvationen blir då;

y= 8x/3 + 11/3

y=7x/17 + 139/17

Ska man sedan beräkna skärningspunkten eller?

joculator 5289 – F.d. Moderator
Postad: 7 maj 2021 12:46

ja

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 12:56

Jag räknade och fick att skärningspunkten för y1=y2 är (-1,1)

y2=y3 (19,16)

y2=y3 (2,9)

Ska jag beräkna avståndet då jag nu har x och y värdet?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 13:29

Jag tänkte beräkna längderna av triangelns sidor och sedan använda det för att beräkna arean, är det korrekt?

 

Då tänker jag;

A(-1,1) B(2,9) och C (19,16)

AB= √(2-(-1)^2 + (9-1)^2 = √73

BC=√(19-2)^2 + (16-9)^2= √338

AC =√(19-(-1)^2 + (16-1)^2 =√625.

Nu har jag då längderna men vad ska jag göra sen för att beräkna arean av triangeln?

Laguna Online 30484
Postad: 7 maj 2021 13:41

Det finns en formel för att beräkna arean av en triangel när man har sidorna, men den brukar inte läras ut. Man kan se triangeln som differensen mellan ett antal trianglar i stället, som man enkelt kan beräkna arean av med bas gånger höjd.

Rita en bild med vad vi vet hittills och visa här.

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 13:48

Jaha, det var därför jag inte kunde hitta någon formel för det. Här infogar jag det jag har gjort än så länge

Laguna Online 30484
Postad: 7 maj 2021 14:03

B verkar vara vid (2,19) och inte (2,9).

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 15:31

Oj, där blev det fel. Så ska det vara istället. Hur beräknas arean för dessa?

Laguna Online 30484
Postad: 7 maj 2021 16:20

Nu går det ett streck mellan (-1,1) och (19,16) så att det bildas en triangel. Hur skulle du göra om strecket i stället gick mellan (19,0) och (19,16) och sedan ett streck mellan (19,0) och (-1,1), så vi får en fyrsiding?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 16:27

Det blir väl ingen fyrsidig med punkterna som ni nämnde? Jag får det till en annan triangel

Laguna Online 30484
Postad: 7 maj 2021 17:01

Rita in mina streck så får vi se. 

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 17:41

Såhär eller?

Laguna Online 30484
Postad: 7 maj 2021 17:47

Mm, men ta bort strecket från (-1,1) till (19,16).

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 18:20

Det ser ut som en parallelltrapets? Ska jag beräkna area för denna figuren? 

Laguna Online 30484
Postad: 7 maj 2021 18:25

Det kan du göra. 

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 18:39

Okej, men då behöver jag väl också subtrahera bort delen som ser ut som att vara ”rätvinklig triangel” för att få area av triangel som efterfrågas? Eller? Det känns som att jag inte hänger med här..

Laguna Online 30484
Postad: 7 maj 2021 18:42

Precis. Men du kan räkna ut arean för parallelltrapetsen och för den där triangeln. Då har du allt. 

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 18:58

Men behöver man använda sig av längderna som jag skrev för att beräkna arean för triangeln eller ska jag använda mig av skärningspunkten och ta x värdet och y värdet?

Laguna Online 30484
Postad: 7 maj 2021 19:01

Jag tycker skärningspunkterna räcker. Har du provat? 

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 19:13

Jag fick det till 296 a.e, vilket låter lite för stort? Det jag gjorde var att;

 

A= h(a+b)/2 där h är 16, a =20 och b=17.. Tar jag kanske fel värde?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 19:15

Oj, jag glömde att beräkna rätvinkliga triangel, efter att ha subtraherat så får jag triangelns värde som 136a.e, är det rätt?

Laguna Online 30484
Postad: 7 maj 2021 19:27

Jag vet inte. Kan du visa alla uträkningarna?

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 19:47

Såhär gjorde jag? Först beräknade jag parallelltrapetsens area och sedan rätvinkliga arean och subtraherade de..

Laguna Online 30484
Postad: 7 maj 2021 20:34

Men det är inte bara en parallelltrapets, det är en liten triangel till vänster också. Du får beräkna dem var för sig.

Somm 160 – Fd. Medlem
Postad: 7 maj 2021 20:43

Triangel som jag har markerat eller? dvs där x är nästan 2 och y är 9? eller menar ni den som finns på andra kvadranten?

Svara
Close