7 svar
709 visningar
Klarafardiga 235 – Fd. Medlem
Postad: 7 sep 2017 09:07 Redigerad: 7 sep 2017 09:07

Sin, Cos och Tan

Godmorgon, 

Som rubriken lyder så undrar jag lite om Sin, Cos och Tan.

Jag läser egentligen högre matte men aldrig kommit i kontakt med detta. Vad är det jag får ut av det och hur funkar det? 

 

Med vänlig hälsning

Smaragdalena 80504 – Avstängd
Postad: 7 sep 2017 09:33 Redigerad: 7 sep 2017 09:34

Här har du en introduktion till trigonometri. Det finns mycket mer i Ma4.

Vad menar du med högre matematik?

Klarafardiga 235 – Fd. Medlem
Postad: 7 sep 2017 09:51 Redigerad: 7 sep 2017 09:54

Tack, går igenom det nu! 

Jag läser Ma4 men var 6 år sedan jag gick ur gymnasiet så har nog bara glömt allt! 

Men det jag inte förstår är vad jag får fram av tan(v)=motstående katetnärliggande katet,?

Smaragdalena 80504 – Avstängd
Postad: 7 sep 2017 10:11

De där definitionerna med hjälp av liksidig triangel har jag aldrig gillat (det snurrar till sig i huvudet på mig och jag kommer inte ihåg om det var sinus eller cosinus som har med närliggande att göra). Jag föredrar definitivt enhetscirkeln! Då har man en cirkel med radien 1, tänker sig en linje från origo till "klockan tre" och ritar en annan linje genom origo som utgör den önskade vinkeln. Då är cosinus och sinus (i alfabetisk ordning) x- respektive y-värden (också i alfabetisk ordning) för den punkt där "vinkellinjen" korsar cirkeln, och tangens är riktningskoefficienten för "vinkellinjen".

tomast80 4249
Postad: 7 sep 2017 11:02

Här är enhetscirkeln med några standardvinklar.

Koordinaterna som visas är:

x=cosv x = \cos v och y=sinv y = \sin v .

Då kan du själv räkna ut:

tanv=sinvcosv=yx \tan v = \frac{\sin v}{\cos v} = \frac{y}{x}

Klarafardiga 235 – Fd. Medlem
Postad: 7 sep 2017 12:52 Redigerad: 7 sep 2017 13:47

Tack så mycket, detta är nu ganska klart fört mig, börjar nu med uppgifter! 

Albiki 5096 – Fd. Medlem
Postad: 7 sep 2017 15:11
smaragdalena skrev :

De där definitionerna med hjälp av liksidig triangel har jag aldrig gillat (det snurrar till sig i huvudet på mig och jag kommer inte ihåg om det var sinus eller cosinus som har med närliggande att göra). Jag föredrar definitivt enhetscirkeln! Då har man en cirkel med radien 1, tänker sig en linje från origo till "klockan tre" och ritar en annan linje genom origo som utgör den önskade vinkeln. Då är cosinus och sinus (i alfabetisk ordning) x- respektive y-värden (också i alfabetisk ordning) för den punkt där "vinkellinjen" korsar cirkeln, och tangens är riktningskoefficienten för "vinkellinjen".

Hej!

Om du fick trigonometri förklarat för dig med hjälp av liksidiga trianglar kan jag förstå att det snurrade till det i huvudet på dig; själv fick jag den förklarad med hjälp av rätvinkliga trianglar och likformighet.

Om man förstorar och förminskar en rätvinklig triangel så ser man att sidornas längder förändras, men att triangelns vinklar förblir desamma och även att förhållanden mellan sidornas längder förblir desamma.

Det bör därför finnas en koppling mellan vinklar och sidors längder i en rätvinklig triangel. De trigonometriska funktionerna är just en sådan koppling.

Albiki

Smaragdalena 80504 – Avstängd
Postad: 7 sep 2017 15:45

Naturligtvis menade jag rätvinkliga trianglar, men de slutade inte snurra i huvudet på mig förrän de fastnade i enhetscirkeln.

Svara
Close