Sannolikheten att välja minst 4 sexor på ett slag med 5 tärningar
Hej! Jag skulle behöva hjälp med denna uppgift.
Såhär har jag gjort:
p( 4 sexor) = (1/6)^4 * (5/6) * c(5,6)
p( 5 sexor) = (1/6) ^5
p( minst 4 sexor) = p( 4 sexor) + p( 5 sexor)
Min fråga: Varför ska man addera sannolikheten för 4 sexor med sannolikheten för 5 sexor och inte multiplicera? Jag trodde att multiplikationsprincipen gav det totala antalet möjligheter.
Tack på förhand!
Kommer du ihåg hur man ritar träddiagram? Gör ett sådant, så bör det bli uppenbart. Om det ing´te blir det, så lägg in en bild av ditt träddiagram här, så skall vi titta på det.
I allmänhet:
- Multiplikation görs när du vill veta sannolikheten för P(A och B), då A och B är oberoende av varandra.
- Addition används när du vill veta sannolikheten för P(A och/eller B), då A och B är oberoende av varandra.
Här vill du veta sannolikheten för minst fyra sexor, dvs. sannolikheten för att få fyra sexor eller fem sexor ("och"-fallet faller bort eftersom tärningarna inte både kan visa och inte visa en sexa samtidigt). Därför ska addition användas.
Multiplikationsprincipen använd när man vill veta vad sannolikheten för att flera event ska inträffa. Det vill säga exempelvis sannolikheten för att Event 1 och Event 2 inträffar. Ex. Om vi slår tärningen två gånger. Vad är sannolikheten för att vi både får en sexa i första och en sexa i andra kastet. Detta uppfylls av (sexa,sexa). Då är det P(sexa i kast 1) * P(sexa i kast 2)
Additionsprincipen används när man vill veta sannolikheten för att något av ett visst antal event inträffar.Det vill säga exempelvis sannolikheten för att Event 1 eller Event 2 inträffar. Ex. Vad är sannolikheten för att vi får minst fyra sexor om vi slår fem gånger? Detta uppfylls både av att vi får fyra sexor men även av att vi får fem sexor. Alltså kan man omformulera detta som sannolikheten att vi får fyra sexor eller att vi får fem sexor. Så måste vi addera ihop dessa sannolikheter eftersom båda oberoende av varandra uppfyller kravet "minst fyra sexor" och tillsammans utgör alla möjligheter alltså P(fyra sexor) + P(fem sexor).
Vet inte om detta gjorde det klarare? Men jag brukar tänka eller=addition och=multiplikation (notera mina fetmarkeringar)
Smaragdalena skrev:Kommer du ihåg hur man ritar träddiagram? Gör ett sådant, så bör det bli uppenbart. Om det ing´te blir det, så lägg in en bild av ditt träddiagram här, så skall vi titta på det.Jag tror att man ritar såhär. Den blåa färgen visar p( 4 sexor)
Smutstvätt skrev:I allmänhet:
- Multiplikation görs när du vill veta sannolikheten för P(A och B), då A och B är oberoende av varandra.
- Addition används när du vill veta sannolikheten för P(A och/eller B), då A och B är oberoende av varandra.
Här vill du veta sannolikheten för minst fyra sexor, dvs. sannolikheten för att få fyra sexor eller fem sexor ("och"-fallet faller bort eftersom tärningarna inte både kan visa och inte visa en sexa samtidigt). Därför ska addition användas.
Tack så mycket!
Jonto skrev:Multiplikationsprincipen använd när man vill veta vad sannolikheten för att flera event ska inträffa. Det vill säga exempelvis sannolikheten för att Event 1 och Event 2 inträffar. Ex. Om vi slår tärningen två gånger. Vad är sannolikheten för att vi både får en sexa i första och en sexa i andra kastet. Detta uppfylls av (sexa,sexa). Då är det P(sexa i kast 1) * P(sexa i kast 2)
Additionsprincipen används när man vill veta sannolikheten för att något av ett visst antal event inträffar.Det vill säga exempelvis sannolikheten för att Event 1 eller Event 2 inträffar. Ex. Vad är sannolikheten för att vi får minst fyra sexor om vi slår fem gånger? Detta uppfylls både av att vi får fyra sexor men även av att vi får fem sexor. Alltså kan man omformulera detta som sannolikheten att vi får fyra sexor eller att vi får fem sexor. Så måste vi addera ihop dessa sannolikheter eftersom båda oberoende av varandra uppfyller kravet "minst fyra sexor" och tillsammans utgör alla möjligheter alltså P(fyra sexor) + P(fem sexor).
Vet inte om detta gjorde det klarare? Men jag brukar tänka eller=addition och=multiplikation (notera mina fetmarkeringar)
Tack så mycket för den utförliga förklaringen, jag tror att jag förstår nu!
Hej!
- Du håller 5 stycken tärningar i din hand och kastar dem på ett bord.
- Du räknar antalet tärningar () som visar siffran sex.
- Du vill beräkna sannolikheten att .
Händelsen är samma sak som händelsen " eller ", vilket betyder att sannolikheten
Eftersom de två händelserna samt inte kan inträffa samtidigt (man säger att händelserna är disjunkta) så säger Additionssatsen för sannolikheter att
- Sannolikheten att du ska se fyra tärningar som visar siffran sex är
.
- Sannolikheten att du ska se fem tärningar som visar siffran sex är
.
Albiki skrev:Hej!
- Du håller 5 stycken tärningar i din hand och kastar dem på ett bord.
- Du räknar antalet tärningar () som visar siffran sex.
- Du vill beräkna sannolikheten att .
Händelsen är samma sak som händelsen " eller ", vilket betyder att sannolikheten
Eftersom de två händelserna samt inte kan inträffa samtidigt (man säger att händelserna är disjunkta) så säger Additionssatsen för sannolikheter att
- Sannolikheten att du ska se fyra tärningar som visar siffran sex är
.
- Sannolikheten att du ska se fem tärningar som visar siffran sex är
.
Tack så mycket!! Nu blev det glasklart!