3 svar
85 visningar
spacexdragon behöver inte mer hjälp
spacexdragon 492 – Fd. Medlem
Postad: 2 jan 2020 20:35

sannolikheten att produkten blir 0

om 0 multipliceras med de 4 andra talen så blir produkten 0 så 0*-1   0*-3    0*0     0*2   0*4     och totalt är det 5*2= 10 kombinationer

5/10=1/2

Laguna Online 30484
Postad: 2 jan 2020 20:50

0*0 kan det inte bli.

Smaragdalena 80504 – Avstängd
Postad: 2 jan 2020 21:00

Du kan inte välja 0*0, eftersom det skall vara två OLIKA tal.

Du kan välja (-1)*0, 2*0, (-3)*0 och 4*0 också.

Det är mer än 10 olika kombinationer totalt. Du kan välja den första siffran på 5 olika sätt. På hur många olika sätt kan du välja den andra siffran, om det inte får vara samma?

oggih Online 1328 – F.d. Moderator
Postad: 3 jan 2020 00:22 Redigerad: 3 jan 2020 00:27

Är man osäker på den här typen av problem så kan man alltid försöka brute-forca det genom att helt enkelt lista alla möjliga kombinationer på något systematiskt sätt, och sedan räkna efter hur många av dessa som uppfyller den önskade egenskapen (i det här fallet: att produkten blir 0).

Prova att göra detta, och se vad du kommer fram till! (Men försök sedan gärna också att räkna ut svaret mer direkt, med ett resonemang  stil med det Smaragdalena föreslår.)


Notera förresten att det finns två olika sätt att tänka kring det här problemet: Antingen ignorerar man ordiningen på faktorerna (så att man exv. betraktar 2·42\cdot 4 och 4·24\cdot 2 som en och samma produkt), eller så tar man hänsyn till ordningen (så att man betraktar 2·42\cdot 4 och 4·24\cdot 2 som två olika produkter).

I det första fallet blir det totala antalet möjligheter mycket riktigt 10 (men du behöver motivera varför!), och i det andra fallet, vilket är det Smaragdalena verkar vara inne på, blir det totala antalet möjligheter 20. Båda alternativen ger dock samma svar i slutändan. Prova gärna att lösa problemet på båda sätten, och fundera på vilka för-/nackdelar de olika alternativen har.

Svara
Close