5 svar
270 visningar
Klas behöver inte mer hjälp
Klas 249
Postad: 24 jan 2021 18:14

Sandlåda på pluggakuten?

Hej,

Jag är lärare och ny medlem på pluggakuten. Jag saknar wikipedias sandlåda där man kan prova funktionerna. Finns det ett sådant forum?

Är just nu intresserad av hur det ser ut för de som ställer frågor när de ska markera en fråga som löst.

Jag provar här istället och är det någon moderator som tycker att det är fel får ni gärna flytta eller radera denna tråd!

Ingen fara, det kan vara bra att ha en testtråd! :)

Programmeraren 3390
Postad: 18 jan 2022 11:23 Redigerad: 18 jan 2022 12:32

Testar genererad Latex.

2x+4=6x \hspace{8} 2x+4={{6} \over {x}}

2x+4-6x=0 2x+4-{{6} \over {x}}=0

-6x+2x+4=0 \hspace{8} -{{6} \over {x}}+2x+4=0

-6x+2x+4=0 \hspace{8} -{{6} \over {x}}+2x+4=0

Common denominator: xx
-6/x+2x+4=(-6+2x2+4x)/x-6/x+2x+4 = (-6+2x^2+4x)/x
-6+2x2+4xx=0 \hspace{8} {{-6+2x^2+4x} \over {x}}=0

Common factor 22
2x2+4x-6x=0 \hspace{8} {{2x^2+4x-6} \over {x}}=0

Zero factor method: Solve 2x2+4x-6=02x^2+4x-6=0
2x2+4x-6=0 \hspace{8} 2x^2+4x-6=0

Common factor 22
Common factor 22
x2+2x-3=0 \hspace{8} x^2+2x-3=0

Quadratic formula: x2+2x-3(x+3)(x-1)x^2+2x-3 \Leftrightarrow (x+3)(x-1)
(x+3)(x-1)=0 \hspace{8} (x+3)(x-1)=0

Zero factor method: Solve x+3=0x+3=0
x+3=0 \hspace{8} x+3=0

x+3x+3 gives root x=-3x=-3
Zero factor method: Solve x-1=0x-1=0
x-1=0 \hspace{8} x-1=0

x-1x-1 gives root x=1x=1

Programmeraren 3390
Postad: 19 jan 2022 10:04 Redigerad: 19 jan 2022 10:32

2x+4=6x \hspace{8} 2x+4={{6} \over {x}}

2x+4-6x=0 \hspace{8} 2x+4-{{6} \over {x}}=0

-6x+2x+4=0 \hspace{8} -{{6} \over {x}}+2x+4=0

Gemensam nämnare: xx
-6/x+2x+4=(-6+2x2+4x)/x-6/x+2x+4 = (-6+2x^2+4x)/x
-6+2x2+4xx=0 \hspace{8} {{-6+2x^2+4x} \over {x}}=0

2x2+4x-6x=0 \hspace{8} {{2x^2+4x-6} \over {x}}=0

Nollproduduktsmetoden: lös 2x2+4x-6=02x^2+4x-6=0
2x2+4x-6=0 \hspace{8} 2x^2+4x-6=0

2x22+4x2-62=0 \hspace{8} {{2x^2} \over {2}}+{{4x} \over {2}}-{{6} \over {2}}=0

x2+2x-3=0 \hspace{8} x^2+2x-3=0

PQ-formeln: x2+2x-3(x+3)(x-1)x^2+2x-3 \Leftrightarrow (x+3)(x-1)
(x+3)(x-1)=0 \hspace{8} (x+3)(x-1)=0

Nollproduduktsmetoden: lös x+3=0x+3=0
x+3=0 \hspace{8} x+3=0

x+3x+3 ger rot x=-3x=-3
Nollproduduktsmetoden: lös x-1=0x-1=0

x-1=0 \hspace{8} x-1=0

x-1x-1 ger rot x=1x=1

2x+4=6/x2x+4=6/x har lösningen x1=1x_{1}=1, x2=-3x_{2}=-3

 

Programmeraren 3390
Postad: 21 jan 2022 14:13 Redigerad: 21 jan 2022 14:39

Division med over: 12·x1212\cdot{x\over 12}

Division med frac: 12·x1212\cdot\frac{x}{12}

Division med dfrac: 12·x1212\cdot\dfrac{x}{12}

Programmeraren 3390
Postad: 17 feb 2022 19:13 Redigerad: 17 feb 2022 19:47

Lösning 1

3x+2y=39.17y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\7y+4x=94.6\end{array}\right.

x=-2y+39.137y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}x=\dfrac{-2y+39.1}{3}\\7y+4x=94.6\end{array}\right.

x=-2y+39.137y+4·-2y+39.13=94.6 \hspace{7em} \left\{\begin{array}{lr}x=\dfrac{-2y+39.1}{3}\\7y+4 \cdot \dfrac{-2y+39.1}{3}=94.6\end{array}\right.

x=-2y+39.13y=9.8 \hspace{7em} \left\{\begin{array}{lr}x=\dfrac{-2y+39.1}{3}\\y=9.8\end{array}\right.

x=-2·9.8+39.13y=9.8 \hspace{7em} \left\{\begin{array}{lr}x=\dfrac{-2 \cdot 9.8+39.1}{3}\\y=9.8\end{array}\right.

x=6.5y=9.8 \hspace{7em} \left\{\begin{array}{lr}x=6.5\\y=9.8\end{array}\right.

Lösning 2

3x+2y=39.17y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\7y+4x=94.6\end{array}\right.

y=-3x+39.127y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}y=\dfrac{-3x+39.1}{2}\\7y+4x=94.6\end{array}\right.

y=-3x+39.127·-3x+39.12+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}y=\dfrac{-3x+39.1}{2}\\7 \cdot \dfrac{-3x+39.1}{2}+4x=94.6\end{array}\right.

y=-3x+39.12x=6.5 \hspace{7em} \left\{\begin{array}{lr}y=\dfrac{-3x+39.1}{2}\\x=6.5\end{array}\right.

y=-3·6.5+39.12x=6.5 \hspace{7em} \left\{\begin{array}{lr}y=\dfrac{-3 \cdot 6.5+39.1}{2}\\x=6.5\end{array}\right.

y=9.8x=6.5 \hspace{7em} \left\{\begin{array}{lr}y=9.8\\x=6.5\end{array}\right.

Lösning 3

3x+2y=39.17y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\7y+4x=94.6\end{array}\right.

3x+2y=39.1x=-7y+94.64 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\x=\dfrac{-7y+94.6}{4}\end{array}\right.

3·-7y+94.64+2y=39.1x=-7y+94.64 \hspace{7em} \left\{\begin{array}{lr}3 \cdot \dfrac{-7y+94.6}{4}+2y=39.1\\x=\dfrac{-7y+94.6}{4}\end{array}\right.

y=9.8x=-7y+94.64 \hspace{7em} \left\{\begin{array}{lr}y=9.8\\x=\dfrac{-7y+94.6}{4}\end{array}\right.

y=9.8x=-7·9.8+94.64 \hspace{7em} \left\{\begin{array}{lr}y=9.8\\x=\dfrac{-7 \cdot 9.8+94.6}{4}\end{array}\right.

y=9.8x=6.5 \hspace{7em} \left\{\begin{array}{lr}y=9.8\\x=6.5\end{array}\right.

Lösning 4

3x+2y=39.17y+4x=94.6 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\7y+4x=94.6\end{array}\right.

3x+2y=39.1y=-4x+94.67 \hspace{7em} \left\{\begin{array}{lr}3x+2y=39.1\\y=\dfrac{-4x+94.6}{7}\end{array}\right.

3x+2·-4x+94.67=39.1y=-4x+94.67 \hspace{7em} \left\{\begin{array}{lr}3x+2 \cdot \dfrac{-4x+94.6}{7}=39.1\\y=\dfrac{-4x+94.6}{7}\end{array}\right.

x=6.5y=-4x+94.67 \hspace{7em} \left\{\begin{array}{lr}x=6.5\\y=\dfrac{-4x+94.6}{7}\end{array}\right.

x=6.5y=-4·6.5+94.67 \hspace{7em} \left\{\begin{array}{lr}x=6.5\\y=\dfrac{-4 \cdot 6.5+94.6}{7}\end{array}\right.

x=6.5y=9.8 \hspace{7em} \left\{\begin{array}{lr}x=6.5\\y=9.8\end{array}\right.

Svara
Close