5 svar
198 visningar
anniwste 19 – Fd. Medlem
Postad: 7 aug 2020 13:17

Sammansatta trigonometriska funktioner

Hej! 

Jag skulle behöva lite hjälp med en uppgift.

Låt oss börja med att definiera f:R→[0,∞[f:R→[0,∞] enligt f(x)=cosπ x2+2, och g:R→Rg:R→R enligt g(x)=-11x6. I den här inlämningsuppgiften ska vi studera den sammansatta funktionen hh av f och g, vilken uppfyller h(x)=f(g(x)) för alla x i dess definitionsmängd.

a) Ge uttrycket för h(x).

b) Beräkna h(3)h(3), h(4)h(4) och h(5)h(5). Ditt svar ska inte innehålla någon sinus- eller cosinusfunktion och ska inte vara på decimalform.

a) h(x)=cos π-11x62=cosπ(-11x)12

Är detta rätt? 

Får man använda värdet för cos pi =-1 och skriva att h(x)= 11x/12 för att beräkna vidare? 

Smaragdalena 80504 – Avstängd
Postad: 7 aug 2020 14:18

ja

anniwste 19 – Fd. Medlem
Postad: 7 aug 2020 14:31

Tack för svaret.

Och då blir h:s 

definitionsmängd  , målmängd [0,] och värdemängd [0,∞]  eller måste man ta hänsyn till möjliga cosinus värde? 

h(x) är surjektiv för att värdemängden är lika med målmängden och injektiv för att alla värde avbildas på olika element (11a1211b12). Är detta rätt?

PATENTERAMERA 5987
Postad: 7 aug 2020 14:44

Ett problem här är att cosπx är lite tvetydigt.

Menar man cos(πx) eller cos(π)·x; du antar det andra alternativet, men jag tror att problemskrivaren har tänkt sig det första alternativet.

anniwste 19 – Fd. Medlem
Postad: 7 aug 2020 15:49
PATENTERAMERA skrev:

Ett problem här är att cosπx är lite tvetydigt.

Menar man cos(πx) eller cos(π)·x; du antar det andra alternativet, men jag tror att problemskrivaren har tänkt sig det första alternativet.

Det har du rätt i... men då blir

a)h(x)=-cos(11πx)12+2???

b)h(3)=25/12

h(4)=23/12

h(5)=25/12

c) definitionsmängd R ℝ , målmängd [0,∞∞]  och värdemängd ???

d) den är fortfarande surjektiv men inte injektiv för att cosinusfunktion är periodisk. 

Eller hur?

PATENTERAMERA 5987
Postad: 7 aug 2020 17:36

hx=cos-11·π·x/62+2.

Svara
Close