18 svar
91 visningar
Dkcre behöver inte mer hjälp
Dkcre Online 1519
Postad: 28 jan 10:24

Rotekvation

Hej!

Hur löser man 5x - x  = 16?

Yngve 40279 – Livehjälpare
Postad: 28 jan 10:30 Redigerad: 28 jan 10:31

Hej.

Börja med att förenkla vänsterledet.

Om du inte ser hur du kan förenkla vänsterledet så pröva att tillfälligt byta ut x\sqrt{x} mot t.ex. aa.

När du har förenklat vänsterledet kan du kvadrera bägge sidor.

Visa dina uträkningar.

Dkcre Online 1519
Postad: 28 jan 10:36

Jag blir frustrerad för det tas inte upp i boken hur man gör, utan uppgiften bara dyker upp ifrån ingenstans utan att man har blivit visad någonting liknande så ska man försöka klura ut det ändå. Inte så effektivt.

5x - x = 1625x - x = 16(25x)2 - (x)2 = 25625x - x = 256X = 256/24

Yngve 40279 – Livehjälpare
Postad: 28 jan 10:41 Redigerad: 28 jan 10:42

Rad 1 och 2 stämmer, men inte rad 3.  gäller inte att (25x-x)2=(25x)2-(x)2(\sqrt{25x}-\sqrt{x})^2=(\sqrt{25x})^2-(\sqrt{x})^2 (tänk på kvadreringsregeln).

Men det var inte så jag menade.

Pröva att ersätta x\sqrt{x} med aa.

Då blir ekvationen 5a-a=165a-a=16.

Förenkla nu vänsterledet, lös ut aa och byt sedan tillbaka från aa till x\sqrt{x}.

Dkcre Online 1519
Postad: 28 jan 10:51

Okej.. vad är skillnaden mellan dem?

Blir det såhär då? 25X -2(25X2) + x 

Jo, då blir det att X är 16.

Yngve 40279 – Livehjälpare
Postad: 28 jan 11:05
Dkcre skrev:

Okej.. vad är skillnaden mellan dem?

Blir det såhär då? 25X -2(25X2) + x 

Jo, då blir det att X är 16.

Ja, det stämmer.

Men pröva gärna att räkna ut det på det enklare sättet, genom att först förenkla vänsterledet.

Dkcre Online 1519
Postad: 28 jan 11:07 Redigerad: 28 jan 12:13

5a - a = 16

4a = 16

a = 16/4

a= 4

X = a(X)2 = a2X = 16

516 - 16 = 165×4 - 4 = 1620-4 = 16

Dkcre Online 1519
Postad: 28 jan 11:13 Redigerad: 28 jan 11:44

Jag förstår inte riktigt hur man ska tolka det här uttrycket:

25x - 2(25X2) + x 

Om jag vill multiplicera in 2an här, blir resultatet 100X^2 ?

Då har man 26X - sqrt 100x^2 = 256

Men vad är sqrt 100x^2?

Blir det helt enkelt 10x? Jag prövar.

26X - 10X = 256

16X = 256

X = 256/16

X = 16

Tycker följande är lite svårt att förstå:

x + x = a(x + x )2 = a2Och inte:(x)2 + (x)2 = a2

Hur kan jag tänka för att göra det lättare? Räknar på det och ser att det inte alls är samma sak, men kan inte förhålla mig till det ändå. 

Yngve 40279 – Livehjälpare
Postad: 28 jan 12:11
Dkcre skrev:

5a -a = 16

4a = 16

a = 16

Här missar du att dividera med 4 i hlgerledet.

Det ska vara

4a4=164\frac{4a}{4}=\frac{16}{4}

a=4a=4

Byt sedan tillbaka från aa till x\sqrt{x}:

x=4\sqrt{x}=4

Kvadrera bägge sidor:

(x)2=42(\sqrt{x})^2=4^2

Förenkla:

x=16x=16

Dkcre Online 1519
Postad: 28 jan 12:13

Jo, såg det. Rättade till slarvfelen.

Yngve 40279 – Livehjälpare
Postad: 28 jan 12:19 Redigerad: 28 jan 14:51
Dkcre skrev:

Jag förstår inte riktigt hur man ska tolka det här uttrycket:

25x - 2(25X2) + x 

Något enklare vore att göra så här:

5x-x=165\sqrt{x}-\sqrt{x}=16

Kvadrera bögge sidor, använd andra kvadreringsregeln:

(5x)2-2·5xx+(x)2=162(5\sqrt{x})^2-2\cdot5\sqrt{x}\sqrt{x}+(\sqrt{x})^2=16^2

Nästa steg kan vara att skriva om på följande sätt:

25x-10x+x=16225x-10x+x=16^2

16x=16216x=16^2

16x16=16216\frac{16x}{16}=\frac{16^2}{16}

x=16x=16

Om jag vill multiplicera in 2an här, blir resultatet 100X^2 ?

Då har man 26X - sqrt 100x^2 = 256

Men vad är sqrt 100x^2?

Blir det helt enkelt 10x? Jag prövar.

26X - 10X = 256

16X = 256

X = 256/16

X = 16

Tycker följande är lite svårt att förstå:

x + x = a(x + x )2 = a2Och inte:(x)2 + (x)2 = a2

Hur kan jag tänka för att göra det lättare? Räknar på det och ser att det inte alls är samma sak, men kan inte förhålla mig till det ändå. 

Det är viktigt att veta att om du kvadrerar ett uttryck som består av två termer, t.ex. b+c, så blir resultatet inte b2+x2.

Det beror på att (b+c)2 enligt första kvadreringsregeln är lika med b2+2bc+c2.

Titta I ditt formelblad så hittar du både de viktiga kvadreringsreglerna och den viktiga konjugatregeln.


Tillägg: 28 jan 2024 15:00

Fixat formateringen.

Dkcre Online 1519
Postad: 28 jan 14:32 Redigerad: 28 jan 14:36

Det verkar som att (b2+x2)alltid blir hälften så stort som (b+x)2.

Lite intressant.

Eller det gäller bara vid samma baser 

Ture 10337 – Livehjälpare
Postad: 28 jan 14:38
Dkcre skrev:

Det verkar som att (b2+x2)alltid blir hälften så stort som (b+x)2.

Lite intressant.

Nej, så är det inte

ta ex vis a = 1 och b = 2

12+22 = 5

(1+2)2 = 32 = 9

eller a = 0,1 och b = 1

ger i ena fallet 1,01 och i det andra 1,21

Dkcre Online 1519
Postad: 28 jan 14:42

Såg det.

Men när det är samma bas verkar det gälla så länge det inte är decimaltal. Då verkar skillnaden vara beroende av antal decimaler istället

Yngve 40279 – Livehjälpare
Postad: 28 jan 15:14 Redigerad: 28 jan 15:15
Dkcre skrev:

Det verkar som att (b2+x2)alltid blir hälften så stort som (b+x)2.

Lite intressant.

Eller det gäller bara vid samma baser 

Jättebra att du är nyfiken och reflekterar över sådant och kul att du delar med dig.

Vi undersöker påståendet tillsammans, i hopp om att du I framtiden på egen hand kan ta reda på om hypoteser stämmer.

Enligt första kvadreringaregeln så gäller det alltid att (b+x)2 = b2+2bx+x2, vilket kan skrivas som (b2+x2)+2bx.

För att (b+x)2 ska vara dubbelt så stort som (b2+x2) så måste det alltså gälla att (b2+x2)+2bx = 2•(b2+x2), vilket ger oss att 2bx = b2+x2.

Detta gäller för vissa värden på b och x (t.ex. b = x = 1), men inte för alla värden på b och x (t.ex. b = 1, x = 2).

Alltså stämmer inte hypotesen generellt.

=========

Men det där om samma baser är ytterligare en bra observation.

Om b = x så gäller nämligen att b2+x2 = b2+b2 = 2b2 samt att 2bx = 2b•b = 2b2.

Så hypotesen gäller alltså för alla situationer där b = x. Bra fångat.

Dkcre Online 1519
Postad: 28 jan 15:42 Redigerad: 28 jan 15:43

Tack så mycket!

Är metoden med att byta ut termen och tillfälligt strunta i roten ur tecknet alltid lämplig?

Yngve 40279 – Livehjälpare
Postad: 28 jan 15:52 Redigerad: 28 jan 15:52
Dkcre skrev:

Är metoden med att byta ut termen och tillfälligt strunta i roten ur tecknet alltid lämplig?

Man behöver inte använda den metoden, det går utmärkt att redan från början förenkla vänsterledet till 4x4\sqrt{x}, men det förutsätter ju att man ser att det går. Detta kan vara svårt eftersom de komplicerade uttrycken "skymmer sikten".

Jag tycker att det ofta är lämpligt att tillfälligt byta ut avancerade uttryck mot enklare, eftersom det då blir mycket enklare att se strukturen och att det då ofta dyker upp idéer på möjliga genvägar i huvudet.

Visst är det enklare att se att 5a-a5a-a går att förenkla till 4a4a än att se att 5x-x5\sqrt{x}-\sqrt{x} går att förenkla till 4x4\sqrt{x}?

Dkcre Online 1519
Postad: 28 jan 16:15 Redigerad: 28 jan 16:16

Jo, absolut. Fast det har ju också att göra med kunskap om hur man kan manipulera ett rotuttryck.

Tänker att, som jag tänker mig, så bör man väl börja med att anpassa sig efter regler och formler utan att reflektera för mycket. Sedan när man blir mer van med det och kanske mer börjar fundera över varför man egentligen utför dom momenten man gör, så kan ju en djupare förståelse växa fram och man kan mer eller mindre manipulera uttryck lite hur man vill eftersom man inte behöver förstå vad de står för, utan man ser det bara egentligen.

Problemet i mitt fall är att jag försöker halka in på steg två här lite för tidigt, när jag inte alls är redo för det. Så lite i fel ände.

Nu handlade detta om ett enkelt rotuttryck men ändå. Och jag antar att jag bara återberättade din poäng här.

Yngve 40279 – Livehjälpare
Postad: 28 jan 22:54

Vi människor uppfattar mönster efter ett tag, när vi har upplevt samma eller liknande saker flera gånger.

I början är det svårt att se dessa mönster, men ju fler uppgifter du räknar, desto lättare blir det.

Svara
Close