37 svar
711 visningar
Katarina149 behöver inte mer hjälp
Katarina149 7151
Postad: 11 mar 2021 17:19

Rita grafen f(x)

Varför är grafen ökande för värden då x>0?  Enligt min teckentabell ska derivatan vara negativ alltså minskande . Så hur är den stigande på bilden? Vad gör jag för fel?

Laguna Online 30551
Postad: 11 mar 2021 17:28

Hur har du fått en formel för f'(x)? Den stämmer inte.

Det räcker att titta på grafen, det behövs ingen algebra. 

Katarina149 7151
Postad: 11 mar 2021 17:30

Jag skrev funktionen f’(x) genom att titta på grafens nollställen, därefter beräknade jag k värdet. Hur kan man av att enbart titta på grafen lösa uppgiften?

Smaragdalena 80504 – Avstängd
Postad: 11 mar 2021 18:24
Katarina149 skrev:

Jag skrev funktionen f’(x) genom att titta på grafens nollställen, därefter beräknade jag k värdet. Hur kan man av att enbart titta på grafen lösa uppgiften?

Börja med att titta på grafen och ta reda på vilka x-värden som motsvarar att f(x) har en maximipunkt, minimipunkt eller terrasspunkt. Vilka x-värden är det?

Katarina149 7151
Postad: 11 mar 2021 18:26

x=-3 ger maximipunkt enligt min teckentabell 

Laguna Online 30551
Postad: 11 mar 2021 18:28 Redigerad: 11 mar 2021 18:30

Din teckentabell säger att f'(x) är negativ för x > 0, men den är positiv.

Din formel var ett bra försök, men det blir fel eftersom 0 är en dubbelrot, så k(x+3)(x-0)(x-0) är bättre. Man kan se direkt att det inte är en parabel.

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 21:03 Redigerad: 11 mar 2021 21:04

Teckentabell är en bra idé.

Du kan göra en teckentabell direkt från grafen i bilden, dvs grafen av f'(x).

Där ser du att 

  • f'(x) < 0 då x < -3
  • f'(x) = 0 då x = -3
  • f'(x) > 0 då -3 < x < 0
  • f'(x) = 0 då x = 0
  • f'(x) > 0 då x > 0

Din teckentabell blir alltså som följer:

Du ser alltså att f(x) ska ha

  • negativ lutning då x < -3
  • minpunkt då x = -3
  • positiv lutning då -3 < x < 0
  • terrasspunkt då x = 0
  • positiv lutning då x > 0
Katarina149 7151
Postad: 11 mar 2021 21:08 Redigerad: 11 mar 2021 21:08
Laguna skrev:

Din teckentabell säger att f'(x) är negativ för x > 0, men den är positiv.

Din formel var ett bra försök, men det blir fel eftersom 0 är en dubbelrot, så k(x+3)(x-0)(x-0) är bättre. Man kan se direkt att det inte är en parabel.

Fråga 1) Varför har funktionen f(x) en dubbelrot då x=0?  Varför är det fel att skriva 

(x-3)(x-0)*k=f’(x)?

Fråga 2) Yngve din metod används när man inte räknar ut funktionen på grafen 

Katarina149 7151
Postad: 11 mar 2021 21:13 Redigerad: 11 mar 2021 21:14
Yngve skrev:

Teckentabell är en bra idé.

Du kan göra en teckentabell direkt från grafen i bilden, dvs grafen av f'(x).

Där ser du att 

  • f'(x) < 0 då x < -3
  • f'(x) = 0 då x = -3
  • f'(x) > 0 då -3 < x < 0
  • f'(x) = 0 då x = 0
  • f'(x) > 0 då x > 0

Din teckentabell blir alltså som följer:

Du ser alltså att f(x) ska ha

  • negativ lutning då x < -3
  • minpunkt då x = -3
  • positiv lutning då -3 < x < 0
  • terrasspunkt då x = 0
  • positiv lutning då x > 0

Jag blir förvirrad av att derivatan är noll då x=-3 och då x=0. Det är hur man gör teckentabellen som förrvirrar mig för grafen visar derivatan, det är inte en vanlig runtom utan derivatan .. Så det känns lite svårare att tolka vart derivatan är 0, vart finns en maxpunkt och vart finns en minpunkt..osv

Laguna Online 30551
Postad: 11 mar 2021 21:14
Katarina149 skrev:
Laguna skrev:

Din teckentabell säger att f'(x) är negativ för x > 0, men den är positiv.

Din formel var ett bra försök, men det blir fel eftersom 0 är en dubbelrot, så k(x+3)(x-0)(x-0) är bättre. Man kan se direkt att det inte är en parabel.

Fråga 1) Varför har funktionen f(x) en dubbelrot då x=0?  Varför är det fel att skriva 

(x-3)(x-0)*k=f’(x)?

Man ser att det är en dubbelrot på att lutningen är noll där. (Det kanske du inte har lärt dig.) Din andragradsfunktion är fel för att den inte matchar kurvan.

Katarina149 7151
Postad: 11 mar 2021 21:15 Redigerad: 11 mar 2021 21:15
Yngve skrev:

Teckentabell är en bra idé.

Du kan göra en teckentabell direkt från grafen i bilden, dvs grafen av f'(x).

Där ser du att 

  • f'(x) < 0 då x < -3
  • f'(x) = 0 då x = -3
  • f'(x) > 0 då -3 < x < 0
  • f'(x) = 0 då x = 0
  • f'(x) > 0 då x > 0

Din teckentabell blir alltså som följer:

Du ser alltså att f(x) ska ha

  • negativ lutning då x < -3
  • minpunkt då x = -3
  • positiv lutning då -3 < x < 0
  • terrasspunkt då x = 0
  • positiv lutning då x > 0

Hur kan derivatan på grafen vid x=-4 vara negativ? Om grafen stiger i positiv riktning uppåt

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 21:24
Katarina149 skrev:

Hur kan derivatan på grafen vid x=-4 vara negativ? Om grafen stiger i positiv riktning uppåt

Till vänster om x = -3 ligger grafen av derivatan under x-axeln.

Alltså är derivatan negativ till vänster om x = -3.

Katarina149 7151
Postad: 11 mar 2021 21:26

Jag förstår inte vad du menar Yngve. Den är ju positiv riktad uppåt 

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 21:31

Ja men det som visas är ju grafen till derivatan, dvs grafen till f'(x).

Den pil du har ritat betyder att andraderivatan f''(x) är positiv för alla x < -2.

Katarina149 7151
Postad: 11 mar 2021 21:35 Redigerad: 11 mar 2021 21:35

Hur hänger derivatan och andra derivatan ihop med den ritade funktionen f’(x).

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 22:37

Det är det som uppgiften går ut på, att rita en möjlig graf till funktionen f(x), baserat på det vi vet, nämligen hur grafen till derivatafunktionen f'(x) ser ut.

Andraderivatafunktionen f''(x) och dess graf har inget med uppgiften att göra.

Katarina149 7151
Postad: 11 mar 2021 22:40

Okej men jag förstår inte hur du skrev teckentabellen .... Kam du visa mer detaljerat hur du tänkte när du skrev in värderna i teckentabellen 

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 22:53 Redigerad: 11 mar 2021 22:56

Titta på grafen till f'(x).

Där ser du att 

  • grafen ligger under x-axeln (dvs f'(x) < 0) då x < -3. Alltså ska det stå ett minustecken i tabellen under x = -4.
  • grafen ligger x-axeln (dvs f'(x) = 0) då x = -3. Alltså ska det stå en nolla i tabellen under x = -3.
  • grafen ligger över x-axeln (dvs f'(x) > 0) då -3 < x < 0. Alltså ska det stå ett plustecken i tabellen under x = -1.
  • grafen ligger x-axeln (dvs f'(x) = 0) då x = 0. Alltså ska det stå en nolla i tabellen under x = 0.
  • grafen ligger över x-axeln (dvs f'(x) > 0) då x > 0. Alltså ska det stå ett plustecken i tabellen under x = 1.
Katarina149 7151
Postad: 11 mar 2021 23:01

Men varför är derivatan noll om grafen f’(x) är under x axeln? Och varför är derivatan större än 0 om grafen ligger ovanpå x axeln?

Smaragdalena 80504 – Avstängd
Postad: 11 mar 2021 23:03

För att grafen föreställer derivatan f'(x), inte funktionen f(x)

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 23:15 Redigerad: 11 mar 2021 23:16

Jag är osäker på vad du menar med "derivatan". jag tror inte att vi menar samma sak.

Vilket/vilka av följande punkter känner du att du behöver få en utförligare förklaring av?

  1. Vi har två funktioner: f(x) och f'(x).
  2. Sambandet mellan dem är att f'(x) är derivatafunktionen till f(x). Vi säger lite slarvigt att f'(x) är "derivatan" till f(x).
  3. Vi ser grafen till derivatafunktionen f'(x) i uppgiften.
  4. Den grafen visar alltså vad funktionen f(x) har för lutning vid de olika x-värdena.
  5. I intervallet x < -3 så ligger grafen under x-axeln. I det intervallet är f'(x) < 0 och här har alltså grafen till f(x) en negativ lutning.
  6. Vid x = -3 så korsar grafen x-axeln. I den punkten är f'(x) = 0 och här har alltså grafen till f(x) en stationär punkt (ingen lutning).
  7. I intervallet -3 < x < 0 så ligger grafen över x-axeln. I det intervallet är f'(x) > 0 och här har alltså grafen till f(x) en positiv lutning.
  8. Vid x = 0 så korsar grafen x-axeln. I den punkten är f'(x) = 0 och här har alltså grafen till f(x) en stationär punkt (ingen lutning).
  9. I intervallet x > 0 så ligger grafen över x-axeln. I det intervallet är f'(x) > 0 och här har alltså grafen till f(x) en positiv lutning.

     
     
     
Katarina149 7151
Postad: 11 mar 2021 23:23 Redigerad: 11 mar 2021 23:24

Punkt 5 behöver jag ha förklaring på , varför är lutningen negativ om grafen ”stiger uppåt”

Yngve Online 40311 – Livehjälpare
Postad: 11 mar 2021 23:34

Läs noga vad jag skriver. Jag skriver att grafen till f(x) har negativ lutning. Du blandar ihop det med lutningen på grafen till f'(x) som visas i uppgiften.


Som illustration tar vi funktionen g(x) = -2x.

Dess derivatafunktion är g'(x) = -2.

Det gäller att g'(x) < 0 överallt, vilket tyder på att g(x) har negativ lutning överallt.

Nu är det så att grafen till g'(x) är en horisontell linje på höjden -2.

Denna graf har ingen lutning, men det hindrar ju inte att grafen till g(x) har negativ lutning, eller hur?

Katarina149 7151
Postad: 12 mar 2021 12:49 Redigerad: 12 mar 2021 12:49

Hmm känns inte riktigt att jag förstår.. kan du förklara med hjälp av bilder? 

Smaragdalena 80504 – Avstängd
Postad: 12 mar 2021 14:06

Nu är det så att grafen till g'(x) är en horisontell linje på höjden -2.

Denna graf har ingen lutning, men det hindrar ju inte att grafen till g(x) har negativ lutning, eller hur?

En horisontell linje har visst en lutning - den har lutningen 0. Det är en lodrät linje, som t ex x = 4 som saknar riktningskoefficient.

Yngve Online 40311 – Livehjälpare
Postad: 12 mar 2021 14:52
Smaragdalena skrev:

En horisontell linje har visst en lutning - den har lutningen 0. Det är en lodrät linje, som t ex x = 4 som saknar riktningskoefficient.

Det har du rätt i. Olyckligt formulerat av mig.

Yngve Online 40311 – Livehjälpare
Postad: 12 mar 2021 15:10 Redigerad: 12 mar 2021 15:11
Katarina149 skrev:

Hmm känns inte riktigt att jag förstår.. kan du förklara med hjälp av bilder? 

Vilket/vilka av följande påståenden behöver du få tydligare förklarade?

  1. Funktionen g(x) = -2x. Dess graf  är röd.
  2. Derivatafunktionen g'(x) = -2. Dess graf är blå.
  3. Deruvatafunktionen g'(x) har värdet -2 överallt.
  4. Det betyder att g'(x) är negativ överallt.
  5. Det betyder att grafen till g(x) har lutningen -2 överallt.
  6. Det betyder att grafen till g(x) har negativ lutning överallt.
  7. Grafen till g'(x) är en horisontell linje.
  8. Grafen till g'(x) har lutningen 0 överallt.
  9. Men det betyder inte att grafen till g(x) är horisontell.

Katarina149 7151
Postad: 12 mar 2021 18:21

Punkt 8 hänger jag inte med

Yngve Online 40311 – Livehjälpare
Postad: 12 mar 2021 19:55

Vilket/vilka av följande påståenden behöver du bättre förklaring av?

  1. Alla (icke-vertikala) linjer i ett koordinatsystem kan beskrivas med räta linjens ekvation y=kx+my=kx+m
  2. Konstanten kk anger linjens lutning
  3. Funktionen g'(x)=-2g'(x)=-2
  4. Detta är en rät linje som alltså kan beskrivas med räta linjens ekvation
  5. Denna linjes ekvation är y=-2y=-2
  6. Det betyder att kk-värdet för linjen är lika med 00
  7. Eftersom kk anger linjens lutning så har linjen lutningen 00
Katarina149 7151
Postad: 12 mar 2021 20:03 Redigerad: 12 mar 2021 20:03
Yngve skrev:

Vilket/vilka av följande påståenden behöver du bättre förklaring av?

  1. Alla (icke-vertikala) linjer i ett koordinatsystem kan beskrivas med räta linjens ekvation y=kx+my=kx+m
  2. Konstanten kk anger linjens lutning
  3. Funktionen g'(x)=-2g'(x)=-2
  4. Detta är en rät linje som alltså kan beskrivas med räta linjens ekvation
  5. Denna linjes ekvation är y=-2y=-2
  6. Det betyder att kk-värdet för linjen är lika med 00
  7. Eftersom kk anger linjens lutning så har linjen lutningen 00

Jag förstår inte vart funktionen g(x) kom ifrån . Vad är det du försöker beskriva?

Yngve Online 40311 – Livehjälpare
Postad: 12 mar 2021 20:08

Läs det här svaret.

Jag ville förklara varför det kan vara så att f'(x) har en lutning och f(x) har en annan lutning. 

För att illustrera det tog jag g(x) som ett exempel eftersom det är en enkel funktion med en enkel graf och eftersom funktionen har en enkel derivatafunktion som även den har en enkel graf.

Katarina149 7151
Postad: 14 mar 2021 16:10

Nu har jag äntligen lyckas förstå hur man gör teckentabellen. Men hur ska jag rita grafen f(x)?

Yngve Online 40311 – Livehjälpare
Postad: 14 mar 2021 16:19 Redigerad: 14 mar 2021 16:20

Nu är teckentabellen rätt. Bra!

Du komner inte att kunna rita en exakt graf till f(x), men det är heller inte meningen att du ska glöra det.

Du kan ur din teckentabell utläsa en del fakta, vilket räcker för att skissa en möjlig graf till f(x).

Svara på följande frågor:

  1. I vilket/vilka intervall har grafen till f(x) en positiv lutning?
  2. I vilket/vilka intervall har grafen till f(x) en negativ lutning?
  3. Vid vilka x-värden har grafen till f(x) stationära punkter?
  4. Vilken karaktär har dessa stationära punkter?
Katarina149 7151
Postad: 14 mar 2021 16:40

Hur ska jag veta vad minipunktens koordinater ska vara? Dvs x=-3 men vad ska y värdet vara? 

Yngve Online 40311 – Livehjälpare
Postad: 14 mar 2021 16:56
Katarina149 skrev:

Hur ska jag veta vad minipunktens koordinater ska vara? Dvs x=-3 men vad ska y värdet vara? 

Det kan du inte veta. Det går inte att säga vilken höjd grafen f(x) har, bara vilken lutning den har vid olika x-koordinater.

Bra extraövning för förståelse: Fundera på hur detta hänger ihop med integrationskonstanten C.

========

Men din skiss ser bra ut.

Ritade du av den som står i facit eller hittade du på den själv?

Katarina149 7151
Postad: 14 mar 2021 17:44 Redigerad: 14 mar 2021 17:44

”Bra extraövning för förståelse: Fundera på hur detta hänger ihop med integrationskonstanten C.” . Vad menar du med hur det hänger med inthrtionskonstanten? Jag förstår inte vad du menar. 

=====

Jag ritade inte av grafen utan grafen ritade jag utifrån min teckentabell 

Yngve Online 40311 – Livehjälpare
Postad: 14 mar 2021 18:44 Redigerad: 14 mar 2021 18:45
Katarina149 skrev:

”Bra extraövning för förståelse: Fundera på hur detta hänger ihop med integrationskonstanten C.” . Vad menar du med hur det hänger med inthrtionskonstanten? Jag förstår inte vad du menar. 

  1. Är du med på att f(x) är en primitiv funktion till f'(x)?
  2. Är du med på att även om du känner till funktionsuttrycket för f'(x) så kan du inte helt och hållet bestämma funktionsuttrycket för den primitiva funktionen f(x)?
  3. Är du med på att det beror på att när man tar fram en primitiv funktion så dyker det upp en integrationskonstant C?

Vi tar ett enkelt exempel: Om vi har en funktion g'(x)=2xg'(x)=2x så är de primitiva funktionerna g(x)=x2+Cg(x)=x^2+C.

Så även om vi kan rita grafen till g'(x)g'(x) (den räta linjen) och även fast vi vet att grafen till g(x)g(x) är en parabel så vet vi inte vilken höjd denna parabel ligger på. Det kan vara g(x)=x2g(x)=x^2, g(x)=x2+4g(x)=x^2+4, g(x)=x2-7g(x)=x^2-7 eller vad som helst.

=====

Jag ritade inte av grafen utan grafen ritade jag utifrån min teckentabell 

Bra!

Katarina149 7151
Postad: 14 mar 2021 18:51

Japp då tror att jag förstår!

Svara
Close