3 svar
108 visningar
Splash.e 713
Postad: 21 sep 2023 12:54

Resulterande kraft

 

Jag förstår personerna på botten och toppen. Men På sidorna ex. i läge två så säger de att normalkraften = centripetalkraften. Men är inte centripetalkraften den resulterande kraften av alla verkande krafter. Så då tänker jag att fg också måste tas i beaktning? Eller hur kan de bara säga att FN = centripetalkraften. Mg är ju också där

Macilaci Online 2121
Postad: 21 sep 2023 15:02

Nej, centripetalkraften är inte alltid den resulterande kraften av alla verkande krafter. Det är bara fallet vid enhetlig cirkulär rörelse (dvs när hastigheten är konstant).

T. ex. i läge 4 ser vi en accelererande cirkulär rörelse.

Om banan är cirkulär vet vi bara att den komposant av den resulterande kraften som pekar mot cirkelns mitt är lika med centripetalkraften (kraften som behövs för att stanna på den cirkulära banan).

Splash.e 713
Postad: 27 sep 2023 18:51
Macilaci skrev:

Nej, centripetalkraften är inte alltid den resulterande kraften av alla verkande krafter. Det är bara fallet vid enhetlig cirkulär rörelse (dvs när hastigheten är konstant).

T. ex. i läge 4 ser vi en accelererande cirkulär rörelse.

Om banan är cirkulär vet vi bara att den komposant av den resulterande kraften som pekar mot cirkelns mitt är lika med centripetalkraften (kraften som behövs för att stanna på den cirkulära banan).

För att förtydliga: 

 

om detta exemplet ovan hade varit central rörelse (konstant hastighet) hade det i läge 2 varit resultanten av N2+mg som motsvarat centripetalkraften. Men eftersom det inte är konstant hastighet i exemplet ovan så är det bara normalkraften som är centripetalkraften?? 

Macilaci Online 2121
Postad: 28 sep 2023 23:35

Om detta exempel ovan hade varit cirkulär central rörelse, borde mg ha försvunnit i position 2 eftersom det där är helt tangentiellt (bidrar inte till centripetalkraften utan försöker accelerera i tangentiell riktning).

Svara
Close