17 svar
830 visningar
nikoniko behöver inte mer hjälp
nikoniko 137
Postad: 23 sep 2020 12:39 Redigerad: 23 sep 2020 19:38

Reella tal och heltalsdelar

Jag förstod inte riktigt vad uppgiften betyder, det gör min lärare inte heller. Vi vet vad reella tal är och vad heltalsdelar är för något.

 

Tack på förhand!

Flyttar tråden till åk9, eftersom uppgiften kommer från högstadiets matematiktävling. /Smaragdalena, moderator

Micimacko 4088
Postad: 23 sep 2020 12:58

Det är en golvfunktion. Tror det enklaste är att lösa ekvationen som vanligt och sen experimentera vad som händer när decimalerna klipps bort.

Albiki 5096 – Fd. Medlem
Postad: 23 sep 2020 14:49

Hej N. N. ,

Jag skriver [x][x] för att beteckna heltalsdelen av xx.

  • Talet [2x][2x] är ett heltal nn och [5x][5x] är ett heltal mm och [101x][101x] är ett heltal p.p.
  • Ekvationen säger att 2n+m+p=2020.2n+m+p=2020.

Du vet att [2x]=n[2x]=n är samma sak som att n2x<n+1n \leq 2x < n+1 så att 2[2x]=2n2[2x]=2n är samma sak som att

    2n4x<2n+2.2n \leq 4x < 2n+2.

På samma sätt vet du att m5x<m+1m \leq 5x < m+1 och att p101x<p+1p \leq 101x < p+1. Då följer det att 

    2n+m+p4x+5x+101x<2n+m+p+42n+m+p110x<2n+m+p+4.2n+m+p \leq 4x+5x+101x < 2n+m+p+4 \iff 2n+m+p\leq 110x < 2n+m+p+4.

Men 2n+m+p=20202n+m+p=2020 varför

     2020110x<202420211x<2024110.2020 \leq 110x < 2024 \iff \frac{202}{11} \leq x < \frac{2024}{110}.

Smaragdalena 80504 – Avstängd
Postad: 23 sep 2020 14:53 Redigerad: 23 sep 2020 16:21

Varifrån kommer uppgiften? Den ser inte ut som en HP-fråga brukar göra /moderator

nikoniko 137
Postad: 23 sep 2020 16:51
Micimacko skrev:

Det är en golvfunktion. Tror det enklaste är att lösa ekvationen som vanligt och sen experimentera vad som händer när decimalerna klipps bort.

Hur gör jag det?

nikoniko 137
Postad: 23 sep 2020 16:53
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

nikoniko 137
Postad: 23 sep 2020 16:54
Smaragdalena skrev:

Varifrån kommer uppgiften? Den ser inte ut som en HP-fråga brukar göra /moderator

Tack att du påminde mig! Jag lägger nästan endast upp frågor från HP, så jag gjorde det per automatik, så slarvigt av mig... Detta är en fråga från 2019/2020 HMT (Högstadiets Matematiktävling), kan jag ändra det på något sätt??

Albiki 5096 – Fd. Medlem
Postad: 23 sep 2020 18:06
nikoniko skrev:
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

Ekvationen som du vill lösa.

Laguna Online 30712
Postad: 23 sep 2020 19:30

Jag tycker att heltalsdelen av -2,72 är -2. 

Smaragdalena 80504 – Avstängd
Postad: 23 sep 2020 20:23

I den här uppgiften definierar de heltalsdelen som det största heltal som är mindre än (eller lika med) själva talet. En annan (lika rimlig, tycker jag) definition (som Laguna tydligen föredrar) är att heltalsdelen skall vara närmare 0.

nikoniko 137
Postad: 24 sep 2020 07:56
Laguna skrev:

Jag tycker att heltalsdelen av -2,72 är -2. 

Det tyckte min lärare och jag med, men när vi sökte upp så skulle det alltid gå åt det negativa hållet, alltså -2,72 blir -3....

Är det något jag har missat i vad du skrev??

nikoniko 137
Postad: 24 sep 2020 14:44
Albiki skrev:
nikoniko skrev:
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

Ekvationen som du vill lösa.

Vilken är det som jag vill lösa?

Laguna Online 30712
Postad: 24 sep 2020 15:10
nikoniko skrev:
Albiki skrev:
nikoniko skrev:
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

Ekvationen som du vill lösa.

Vilken är det som jag vill lösa?

Den som står i din fråga, skulle jag tro.

nikoniko 137
Postad: 24 sep 2020 16:14
Laguna skrev:
nikoniko skrev:
Albiki skrev:
nikoniko skrev:
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

Ekvationen som du vill lösa.

Vilken är det som jag vill lösa?

Den som står i din fråga, skulle jag tro.

22x+5x+101x=2020

↑Den där?

nikoniko 137
Postad: 28 sep 2020 14:28
nikoniko skrev:
Laguna skrev:
nikoniko skrev:
Albiki skrev:
nikoniko skrev:
Albiki skrev:
  • Ekvationen säger att 2n+m+p=2020.

Vilken ekvation?

Ekvationen som du vill lösa.

Vilken är det som jag vill lösa?

Den som står i din fråga, skulle jag tro.

22x+5x+101x=2020

↑Den där?

Är jag ute och cyklar?

nikoniko 137
Postad: 23 feb 2021 23:49
Albiki skrev:

Hej N. N. ,

Jag skriver [x][x] för att beteckna heltalsdelen av xx.

  • Talet [2x][2x] är ett heltal nn och [5x][5x] är ett heltal mm och [101x][101x] är ett heltal p.p.
  • Ekvationen säger att 2n+m+p=2020.2n+m+p=2020.

Du vet att [2x]=n[2x]=n är samma sak som att n2x<n+1n \leq 2x < n+1 så att 2[2x]=2n2[2x]=2n är samma sak som att

    2n4x<2n+2.2n \leq 4x < 2n+2.

På samma sätt vet du att m5x<m+1m \leq 5x < m+1 och att p101x<p+1p \leq 101x < p+1. Då följer det att 

    2n+m+p4x+5x+101x<2n+m+p+42n+m+p110x<2n+m+p+4.2n+m+p \leq 4x+5x+101x < 2n+m+p+4 \iff 2n+m+p\leq 110x < 2n+m+p+4.

Men 2n+m+p=20202n+m+p=2020 varför

     2020110x<202420211x<2024110.2020 \leq 110x < 2024 \iff \frac{202}{11} \leq x < \frac{2024}{110}.

Jag tror jag förstår nu, så är alla svar till ekvationen korrekta om x är större, eller lika stort som 202/11, men mundre än 2024/110?

Laguna Online 30712
Postad: 24 feb 2021 08:13

Albikis lösning kan du förmodligen lita på. Han själv är inte på pluggakuten längre.

Jag har inte kollat.

nikoniko 137
Postad: 26 feb 2021 10:57

okej, tack

Svara
Close