Rätvinklig triangel med halvcirkel
Allt jag har kommit fram till är att från mittpunkten D kan jag dra en radie till var halvcirkeln tangerar hypotenusan. (Sen vet jag naturligtvis att hypotenusan är roten ur 2).
Om du drar radien du nämnde får du en triangel som är likformig med den stora triangeln.
Du vet tillräckligt mycket för att kunna använda den likformigheten.
Louis skrev:Om du drar radien du nämnde får du en triangel som är likformig med den stora triangeln.
Du vet tillräckligt mycket för att kunna använda den likformigheten.
Vad menar du?
Om vi kallar tangeringspunkten för F är triangel DFC likformig med den stora triangeln. Båda är rätvinkliga och de har vinkeln C gemensam. Kalla radien r. BC = .
Du kan nu använda likformigheten för att ställa upp en ekvation.