Processing math: 100%
20 svar
195 visningar
KlmJan behöver inte mer hjälp
KlmJan 734
Postad: 27 mar 2024 19:40

Räkna ut A och B

Hej, jag vet inte hur jag ska gå tillväga med följande uppgift:

Vilket är värdet av A och B om uttrycket är lika med 0

 

4y(2x+Ay)-2y(2y+Bx)

Först tog jag bort parenteserna:

8xy+4Ay2-4y2-2Bxy

Sedan försökte jag förenkla det så bra jag kunde och fick då:

8xy + A - 2Bxy

 

Jag har ingen aning om det jag gjort är rätt och jag vet inte hur jag ska gåt tillväga för att räkna ut A och B

Yngve Online 41553
Postad: 27 mar 2024 19:52

Hej, varifrån kommer uppgiften?

KlmJan 734
Postad: 27 mar 2024 19:54

Min mattebok, matematik Y. Var det något konstigt?

Yngve Online 41553
Postad: 27 mar 2024 19:57 Redigerad: 27 mar 2024 19:57

Den verkar lite avancerad för att vara årskurs 8 bara.

Korra Online 3822
Postad: 27 mar 2024 20:00 Redigerad: 27 mar 2024 20:03

4y(2x+Ay)-2y(2y+Bx)=04y(Ay+2x)=2y(2y+Bx)
Om man studerar detta uttryck nu ser man att detta stämmer ifall A=1 och B = 8.
Titta på vänsterledet efter utveckling av parentesen, termen med y2 kommer att ha siffran 4 framför sig. Det måste stämma i högerledet också. Med hjälp av denna slags resonering kan man tänka sig fram till vad A och B måste vara. 



Jag håller med Yngve, det känns lite svårt för årskurs 8. 


Tillägg: 28 mar 2024 09:44

B=4 menar jag


Tillägg: 28 mar 2024 09:44

B=4 menar jag

Yngve Online 41553
Postad: 27 mar 2024 20:01

Hursomhelst, du kan göra så här:

Faktorisera uttrycket till 2y(4x+2Ay-2y-Bx).

För att detta uttryck ska vara lika med 0 för alla möjliga val av x och y så måste uttrycket innanför parenteserna vara lika med 0, dvs det måste gälla att 4x+2Ay-2y-Bx = 0.

Kommer du vidare då?

KlmJan 734
Postad: 27 mar 2024 20:15 Redigerad: 27 mar 2024 20:20
Yngve skrev:

Hursomhelst, du kan göra så här:

Faktorisera uttrycket till 2y(4x+2Ay-2y-Bx).

För att detta uttryck ska vara lika med 0 för alla möjliga val av x och y så måste uttrycket innanför parenteserna vara lika med 0, dvs det måste gälla att 4x+2Ay-2y-Bx = 0.

Kommer du vidare då?

Näpp, jag e ledsen men det gör jag inte. Jag vet inte hur man ska räkna med 2Ay, alltså när det är en stor och en liten variabel. Vi har inte gått igenom det men lär mig gärna o du har en förklaring :) är det 2A som multipliceras med y? Jag vet heller inte vad faktorisering är men jag försökte bara räkna på det sista du skrev "4x+2Ay-2y-Bx = 0."

Jag hade typ velat förenkla men jag vet inte riktigt om det går i detta fall.

Yngve Online 41553
Postad: 27 mar 2024 20:24 Redigerad: 27 mar 2024 20:24

Ja, det är 2A som multipliceras med y.

Du kan skriva om vänsterledet som (4-B)x+(2A-2)y = 0

För att denna ekvation ska vara uppfylld för alla möjliga värden på x och y så måste det dels gälla att 4-B = 0 och att 2A-2 = 0.

Kan du ladda upp en bild av sidan i boken där uppgiften står?

KlmJan 734
Postad: 27 mar 2024 20:27 Redigerad: 27 mar 2024 20:28

Yngve Online 41553
Postad: 27 mar 2024 20:31

Vad betyder symbolen L efter frågan?

KlmJan 734
Postad: 27 mar 2024 20:32
Yngve skrev:

Ja, det är 2A som multipliceras med y.

Du kan skriva om vänsterledet som (4-B)x+(2A-2)y = 0

För att denna ekvation ska vara uppfylld för alla möjliga värden på x och y så måste det dels gälla att 4-B = 0 och att 2A-2 = 0.

Kan du ladda upp en bild av sidan i boken där uppgiften står?

om 4-B ska vara = 0 då borde B vara fyra men jag är inte säker på om det är rätt.

Och om 2A-2 ska vara lika med 0 ska A vara 1

KlmJan 734
Postad: 27 mar 2024 20:34
Yngve skrev:

Vad betyder symbolen L efter frågan?

att det finns en "ledtråd" Den lyder "Förenkla uttrycket. Det leder fram till två stycken xy-termer och två stycken y2-termer. För att uttrycket ska vara lika med noll så måste sifferfaktorerna före xy-termerna och y2-termerna vara lika stora men ha olika tecken."

Yngve Online 41553
Postad: 27 mar 2024 20:39
KlmJan skrev:

om 4-B ska vara = 0 då borde B vara fyra men jag är inte säker på om det är rätt.

Och om 2A-2 ska vara lika med 0 ska A vara 1

Pröva att ersätta B med 4 och A med 1 ursprungsuttrycket och förenkla det. Blir värdet då lika med 0?

Visa alla steg i din uträkning.

Yngve Online 41553
Postad: 27 mar 2024 20:40
KlmJan skrev:

att det finns en "ledtråd" Den lyder "Förenkla uttrycket. Det leder fram till två stycken xy-termer och två stycken y2-termer. För att uttrycket ska vara lika med noll så måste sifferfaktorerna före xy-termerna och y2-termerna vara lika stora men ha olika tecken."

OK, ledtråden var lite otydligt formulerad, men metoden var i princip densamma som den jag visade.

KlmJan 734
Postad: 27 mar 2024 20:48 Redigerad: 27 mar 2024 20:57

ok, 

A=1 

B=4

4y(2x+Ay)-2y(2y+Bx) =

= 8xy+4Ay-4y -2Bxy

 

Nu byter jag ut A och B mot siffrorna:

8xy + 4 * 1y- 4y2 - 2 * 4 xy =

8xy+4y-4y2 - 8xy = 0

 

Jag tror detta är rätt, men jag hade aldrig kunnat lösa uppgiften utan att du gjorde om vänster led. Behöver man verkligen göra det för att kunna räkna ut uppgiften eller hade man kunnat göra det utan att göra om det ursprungliga uttrycket?

cocoman 2
Postad: 24 feb 10:33 Redigerad: 24 feb 11:34

4y(2x+Ay)-2y(2y+Bx) = 0

8xy+4ay- 4y2 - 2bxy = 0

now re arranging to group XY variables and ytogether so we can do factoring in next step

8xy-2bxy + 4ay- 4y= 0

now do factoring, 2 is common factor for XY variables and 4 is common factor for Y2 variables 

2(4xy -bxy) + 4 ( ay-y2 ) = 0

now for the equation to be 0 value of each bracket has to be 0 

which means (4xy -bxy) has to be 0 which mean B has to be 4

also ( ay-y2 ) has to be zero which means a has to be 1

 

Hope this helps

 

for those who need to know what is factoring here is simple example see below

cocoman 2
Postad: 24 feb 10:40
Korra skrev:

4y(2x+Ay)-2y(2y+Bx)=04y(Ay+2x)=2y(2y+Bx)
Om man studerar detta uttryck nu ser man att detta stämmer ifall A=1 och B = 8.
Titta på vänsterledet efter utveckling av parentesen, termen med y2 kommer att ha siffran 4 framför sig. Det måste stämma i högerledet också. Med hjälp av denna slags resonering kan man tänka sig fram till vad A och B måste vara. 



Jag håller med Yngve, det känns lite svårt för årskurs 8. 


Tillägg: 28 mar 2024 09:44

B=4 menar jag


Tillägg: 28 mar 2024 09:44

B=4 menar jag

Förlåt men jag tycker inte att du har gett något logiskt resonemang här

Mahant 4
Postad: 24 feb 11:05 Redigerad: 24 feb 11:05
Korra skrev:

4y(2x+Ay)-2y(2y+Bx)=04y(Ay+2x)=2y(2y+Bx)
Om man studerar detta uttryck nu ser man att detta stämmer ifall A=1 och B = 8.
Titta på vänsterledet efter utveckling av parentesen, termen med y2 kommer att ha siffran 4 framför sig. Det måste stämma i högerledet också. Med hjälp av denna slags resonering kan man tänka sig fram till vad A och B måste vara. 



Jag håller med Yngve, det känns lite svårt för årskurs 8. 


Tillägg: 28 mar 2024 09:44

B=4 menar jag


Tillägg: 28 mar 2024 09:44

B=4 menar jag

Fel resonemang 

Mahant 4
Postad: 24 feb 11:36 Redigerad: 24 feb 11:37

Hello

Mahant 4
Postad: 24 feb 11:36 Redigerad: 24 feb 14:33
cocoman skrev:

4y(2x+Ay)-2y(2y+Bx) = 0

8xy+4ay- 4y2 - 2bxy = 0

now re arranging to group XY variables and ytogether so we can do factoring in next step

8xy-2bxy + 4ay- 4y= 0

now do factoring, 2 is common factor for XY variables and 4 is common factor for Y2 variables 

2(4xy -bxy) + 4 ( ay-y2 ) = 0

now for the equation to be 0 value of each bracket has to be 0 

which means (4xy -bxy) has to be 0 which mean B has to be 4

also ( ay-y2 ) has to be zero which means a has to be 1

 

Hope this helps

 

for those who need to know what is factoring here is simple example see below

4y(2x+Ay)-2y(2y+Bx) = 0

 

8xy + 4Ay² - 4y² - 2bxy = 0

 

8xy-2bxy + 4Ay² - 4y² = 0

 

(8xy-2bxy) = 0

 

(4Ay² - 4y²) = 0

 

Xy(4A - 4) = 0 so A must be 1

 

y²(8 - 2B) = 0 so B must be 4 

Mahant 4
Postad: 24 feb 14:57
Korra skrev:

4y(2x+Ay)-2y(2y+Bx)=04y(Ay+2x)=2y(2y+Bx)
Om man studerar detta uttryck nu ser man att detta stämmer ifall A=1 och B = 8.
Titta på vänsterledet efter utveckling av parentesen, termen med y2 kommer att ha siffran 4 framför sig. Det måste stämma i högerledet också. Med hjälp av denna slags resonering kan man tänka sig fram till vad A och B måste vara. 



Jag håller med Yngve, det känns lite svårt för årskurs 8. 


Tillägg: 28 mar 2024 09:44

B=4 menar jag


Tillägg: 28 mar 2024 09:44

B=4 menar jag

Average Korra fan 

Svara
Close