13 svar
100 visningar
Moosawski behöver inte mer hjälp
Moosawski 219
Postad: 3 okt 2021 18:42

Radien förändringshastiget för en cylinder

Moosawski 219
Postad: 3 okt 2021 18:44
Moosawski skrev:

Uppgift 10, jag har allmänt svårt för dess textuppgifter och jag satsar högt dehär är nog de jag tkr är tuffast. Jag vet att man ska använda kedjeregeln på något sätt men vet inte hur jag ska uttnytja textens info de enda ja märker är att volymen är beroende av radien men de är ganska självklart men då misstänker jag att man ska lista ut vad radien i sin tur är beroende av... Hur går man vidare.. 

creamhog 286
Postad: 3 okt 2021 20:42

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Moosawski 219
Postad: 3 okt 2021 21:25
creamhog skrev:

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Moosawski 219
Postad: 3 okt 2021 21:25
creamhog skrev:

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Nope kmr ingenstans... Haha

creamhog 286
Postad: 3 okt 2021 22:18 Redigerad: 3 okt 2021 22:19
Moosawski skrev:
creamhog skrev:

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Inte exakt, tänk på att r är också en funktion, alltså du har faktiskt V(t) = r^2(t)* pi * h. Om du tillämpar kedjeregeln uppkommer också en r'(t). Förstår du hur jag menar? 

Moosawski 219
Postad: 3 okt 2021 22:25
creamhog skrev:
Moosawski skrev:
creamhog skrev:

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Inte exakt, tänk på att r är också en funktion, alltså du har faktiskt V(t) = r^2(t)* pi * h. Om du tillämpar kedjeregeln uppkommer också en r'(t). Förstår du hur jag menar? 

Moosawski 219
Postad: 3 okt 2021 22:26
creamhog skrev:
Moosawski skrev:
creamhog skrev:

Radien är beroende av tiden (eftersom uppgiften säger att det ökar så att volymen ökar med en visst hastighet).

Det är bra att försöka tolka uppgiften och skriva vad du vet och vad som frågas på matematiskt sätt:

5 dm lång cylinder: h = 5 dm (skriv om i cm) 

Volymen ökar med hastigheten 2.0 cm3 /s: dV/dt = 2 cm/s eller V'(t) = 2 cm/s (vet inte vilka beteckningar du är van med).

Med vilken hastighet ökar radien när den är 5cm: vid en tid t1 har du R(t1) = 5cm; vad är värdet på R'(t)? (eller dR/dt (t1) om du föredrar det).

Kommer du vidare nu? 

Inte exakt, tänk på att r är också en funktion, alltså du har faktiskt V(t) = r^2(t)* pi * h. Om du tillämpar kedjeregeln uppkommer också en r'(t). Förstår du hur jag menar? 

Hur tillämpar man kedjeregeln på r(t) då? 

creamhog 286
Postad: 3 okt 2021 22:39

Tänk att V(t) = V(r(t)). Då säger kedjeregeln att V'(t) = V'(r(t)) * r'(t). Alltså V' = 2 * r * pi * h * r'

Moosawski 219
Postad: 3 okt 2021 23:10
creamhog skrev:

Tänk att V(t) = V(r(t)). Då säger kedjeregeln att V'(t) = V'(r(t)) * r'(t). Alltså V' = 2 * r * pi * h * r'

Var inte volymen beroende av radien? De borde vara V(r) = V(r(t)) 

creamhog 286
Postad: 4 okt 2021 14:55

Ja, det är beroende av r, men r är en funktion av t. Därför är V också beroende av t. V är en sammansatt funktion, med den inre funktionen r(t) och den yttre funktionen v(u) = u* pi * h. 

Moosawski 219
Postad: 4 okt 2021 18:09
creamhog skrev:

Ja, det är beroende av r, men r är en funktion av t. Därför är V också beroende av t. V är en sammansatt funktion, med den inre funktionen r(t) och den yttre funktionen v(u) = u* pi * h. 

U är lika med radien va? 

creamhog 286
Postad: 4 okt 2021 20:37

Ja, du stoppar in radien som u.

Du kan läsa mer om sammansatta funktioner och kedjeregeln i matteboken.

Där använder man g och x, men i ditt fall är det r och t. 

Moosawski 219
Postad: 4 okt 2021 20:40
creamhog skrev:

Ja, du stoppar in radien som u.

Du kan läsa mer om sammansatta funktioner och kedjeregeln i matteboken.

Där använder man g och x, men i ditt fall är det r och t. 

Har redan läst uppg. Tack så mkt!! 

Svara
Close