Procent Guppyer
Nadja har ett akvarium med 36 fiskar av olika arter. En del av dem är guppyer. När Nadja köper 9 nya guppyer fördubblas andelen guppyer i akvariet Hur många guppyer har hon nu?
Var är ditt lösningsförsök?
Teraeagle skrev:Var är ditt lösningsförsök?
Har inte fattat uppgiften men har försökt gissa mig fram på olika sätt men blir bara fel.
Kan du hjälpa mig?
Vi kan hjälpa dig, men börja med att visa hur du har försökt när du gissade dig fram på uppgiften. Sedan kan vi se var det blir fel.
Teraeagle skrev:Vi kan hjälpa dig, men börja med att visa hur du har försökt när du gissade dig fram på uppgiften. Sedan kan vi se var det blir fel.
Jag tänkte 9/36 för att få andelen.
och det blev 0,25 och det är ju en fjärdedel så jag tänkte 36/4 och det blev 9.
Det är en bit på vägen.
Om du kallar antalet guppyer från början för så kommer det efter inköpet finnas guppyer. Från början fanns 36 fiskar och sedan finns 36+9=45 fiskar. Vi vet att vi ska få ett dubbelt så stort tal om vi delar med 45 jämfört med när vi delar med 36. Det ger oss ekvationen:
Vet du hur man löser den?
Teraeagle skrev:Det är en bit på vägen.
Om du kallar antalet guppyer från början för så kommer det efter inköpet finnas guppyer. Från början fanns 36 fiskar och sedan finns 36+9=45 fiskar. Vi vet att vi ska få ett dubbelt så stort tal om vi delar med 45 jämfört med när vi delar med 36. Det ger oss ekvationen:
Vet du hur man löser den?
Nej jag förstår inte?
Har ni gått igenom hur man löser enklare ekvationer som t.ex. ?
Teraeagle skrev:Har ni gått igenom hur man löser enklare ekvationer som t.ex. ?
ja .
MathRules skrev:Nadja har ett akvarium med 36 fiskar av olika arter. En del av dem är guppyer. När Nadja köper 9 nya guppyer fördubblas andelen guppyer i akvariet Hur många guppyer har hon nu?
Hej.
I början kan vi konstatera
x = guppyer och y = andra arter
Sedan får vi veta att när antalet fiskar ökar med 9 är det dubbelt så många guppyer.
Det betyder
Nu har vi följande två ekvationer:
Skriv om ekvationerna genom att börja med den översta och sedan stoppa in y i den nedersta.
Vi fortsätter!
Om x är antalet guppyer, kan du då lösa ut x ur ekvation 2 och få fram rätt svar på så sätt.
Är inte det här ganska avancerat för sjuan?
Laguna skrev:Är inte det här ganska avancerat för sjuan?
That remains to be seen. Det kan vara bra att få se olika sätt att lösa en uppgift på.
Korra skrev:MathRules skrev:Nadja har ett akvarium med 36 fiskar av olika arter. En del av dem är guppyer. När Nadja köper 9 nya guppyer fördubblas andelen guppyer i akvariet Hur många guppyer har hon nu?
Hej.
I början kan vi konstatera
x = guppyer och y = andra arter
Sedan får vi veta att när antalet fiskar ökar med 9 är det dubbelt så många guppyer.
Det betyder
Nu har vi följande två ekvationer:
Skriv om ekvationerna genom att börja med den översta och sedan stoppa in y i den nedersta.
Vi fortsätter!
Om x är antalet guppyer, kan du då lösa ut x ur ekvation 2 och få fram rätt svar på så sätt.
Men ska jag tänka 36-6 = 15?
Egentligen vet jag inte varför jag tänker att man subtraherar 6 från 36 men jag tror det är för att om man delar 36 på 6 får man 6?.....
Jag tror att metoden "gissa sig fram" är lämplig i årskurs 7.
Från början är det fiskar, varav en del är guppyer.
Nadja köper nya guppyer, då blir antalet fiskar i akvariet .
Samtidigt har andelen guppyer fördubblats.
Frågan gäller hur många guppyer hon har nu?
Nu börjar vi gissa oss fram till rätt lösning.
Första gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mindre än en fördubbling.
Det borde varit färre guppyer från början så att de nya medförde en större ändring.
Andra gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mer än en fördubbling.
Det borde alltså varit fler guppyer från början så att de nya medförde en mindre förändring.
Antalet guppyer från början måste alltså vara fler än men färre än .
Kan du fortsätta själv?
Yngve skrev:Jag tror att metoden "gissa sig fram" är lämplig i årskurs 7.
Från början är det fiskar, varav en del är guppyer.
Nadja köper nya guppyer, då blir antalet fiskar i akvariet .
Samtidigt har andelen guppyer fördubblats.
Frågan gäller hur många guppyer hon har nu?
Nu börjar vi gissa oss fram till rätt lösning.
Första gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mindre än en fördubbling.
Det borde varit färre guppyer från början så att de nya medförde en större ändring.
Andra gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mer än en fördubbling.
Det borde alltså varit fler guppyer från början så att de nya medförde en mindre förändring.
Antalet guppyer från början måste alltså vara fler än men färre än .
Kan du fortsätta själv?
Nej Hur fortsätter jag?
MathRules skrev:Yngve skrev:Jag tror att metoden "gissa sig fram" är lämplig i årskurs 7.
Från början är det fiskar, varav en del är guppyer.
Nadja köper nya guppyer, då blir antalet fiskar i akvariet .
Samtidigt har andelen guppyer fördubblats.
Frågan gäller hur många guppyer hon har nu?
Nu börjar vi gissa oss fram till rätt lösning.
Första gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mindre än en fördubbling.
Det borde varit färre guppyer från början så att de nya medförde en större ändring.
Andra gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mer än en fördubbling.
Det borde alltså varit fler guppyer från början så att de nya medförde en mindre förändring.
Antalet guppyer från början måste alltså vara fler än men färre än .
Kan du fortsätta själv?
Nej Hur fortsätter jag?
Jaha var 5 en gissning Jaha ok jag tror att man delar 6/36 och då får man likadant svar som 1/6 så jag antar att man adderar 9 och 6 så att det blir 15 guppyer?
Du fick veta att "antalet guppyer från början måste alltså vara fler än 5 men färre än 9". Kan du säga ett tal mellan 5 och 9?
Laguna skrev:Du fick veta att "antalet guppyer från början måste alltså vara fler än 5 men färre än 9". Kan du säga ett tal mellan 5 och 9?
Jag gjorde det 6/36 är likadant som 1/6 så jag räknade 1/6 av 36 och fick 6 och de adderade jag med 9.
Laguna skrev:
Du fick veta att "antalet guppyer från början måste alltså vara fler än 5 men färre än 9". Kan du säga ett tal mellan 5 och 9?
Men kan du förklara varför just 5-9 ?
MathRules skrev:Laguna skrev:
Du fick veta att "antalet guppyer från början måste alltså vara fler än 5 men färre än 9". Kan du säga ett tal mellan 5 och 9?
Men kan du förklara varför just 5-9 ?
Eftersom Yngve redan har räknat ut att 9 var för många men 5 var för få.
Finns det någon direkt lösning (utan gissningar) som inte behöver några variabler?
MathRules skrev:
Jaha var 5 en gissning Jaha ok jag tror att man delar 6/36 och då får man likadant svar som 1/6 så jag antar att man adderar 9 och 6 så att det blir 15 guppyer?
Ja 15 guppyer är rätt svar.
Kan du beskriva resonemanget på samma sätt som jag har gjort i mitt förra svar?
Dvs så här.
Tredje gissning: Det var 6 guppyer i akvariet från början.
Det betyder att
- andelen guppyercfrån början var ...
Och så vidare.
Yngve skrev:MathRules skrev:Jaha var 5 en gissning Jaha ok jag tror att man delar 6/36 och då får man likadant svar som 1/6 så jag antar att man adderar 9 och 6 så att det blir 15 guppyer?
Ja 15 guppyer är rätt svar.
Kan du beskriva resonemanget på samma sätt som jag har gjort i mitt förra svar?
Dvs så här.
Tredje gissning: Det var 6 guppyer i akvariet från början.
Det betyder att
- andelen guppyercfrån början var ...
Och så vidare.
men jag fick fram svaret 6 genom att 6/36 är likadant som 1/6 så 36/6 är lika med 6 och det plus 9 är 15 det var så jag fick fram svaret genom att se ett mönster och kolade på facit därefter och det stod tänk 1/6 kan man tänka på det sättet Och Yngve har inte förstått hur man gör på ditt sätt men skulle gärna vilja lära mig.
kan man tänka på det sättet jag gjorde?
MathRules skrev:
men jag fick fram svaret 6 genom att 6/36 är likadant som 1/6 så 36/6 är lika med 6 och det plus 9 är 15 det var så jag fick fram svaret genom att se ett mönster och kolade på facit därefter och det stod tänk 1/6 kan man tänka på det sättet Och Yngve har inte förstått hur man gör på ditt sätt men skulle gärna vilja lära mig.
kan man tänka på det sättet jag gjorde?
Om "mitt" sätt:
Hur långt in i resonemanget hängde du med?
--------
Om "ditt" sätt:
Jag förstår nog inte riktigt hur du tänkte.
Varför valde du just talet 6 och hur kom du fram till att det stämmer med uppgiften?
Yngve skrev:MathRules skrev:men jag fick fram svaret 6 genom att 6/36 är likadant som 1/6 så 36/6 är lika med 6 och det plus 9 är 15 det var så jag fick fram svaret genom att se ett mönster och kolade på facit därefter och det stod tänk 1/6 kan man tänka på det sättet Och Yngve har inte förstått hur man gör på ditt sätt men skulle gärna vilja lära mig.
kan man tänka på det sättet jag gjorde?
Om "mitt" sätt:
Hur långt in i resonemanget hängde du med?
--------
Om "ditt" sätt:
Jag förstår nog inte riktigt hur du tänkte.
Varför valde du just talet 6 och hur kom du fram till att det stämmer med uppgiften?
1/6 har samma värde som 6/36 räkna 1/6 av 36 så får man ju 6 det var så jag tänkte.
MathRules skrev:1/6 har samma värde som 6/36 räkna 1/6 av 36 så får man ju 6 det var så jag tänkte.
Jag förstår ändå inte varför du väljer just 6 och inte till exempel 12, inte heller hur du kommer fram till att din lösning stämmer, så jag kan inte svara på om det går att tänka på det sättet.
Hur långt hänger du med i "min" lösning?
Yngve skrev:MathRules skrev:1/6 har samma värde som 6/36 räkna 1/6 av 36 så får man ju 6 det var så jag tänkte.
Jag förstår ändå inte varför du väljer just 6 och inte till exempel 12, inte heller hur du kommer fram till att din lösning stämmer, så jag kan inte svara på om det går att tänka på det sättet.
Hur långt hänger du med i "min" lösning?
Nej jag hänger inte med i din lösning kan du ge mig ett till exempel med mer hjälp?
Ok Vänta ska försöka tänka på ditt sätt 6/36=0,16 och 15/45=0,33 det är ungefär en fördubbling med 1 rest.
Men när det fördubblas måste det vara exakt? så det är väl fel för att det finns ju en fisk över?
Edit> Har prövat med så många tal nu och 6 var närmast tänkte jag rätt ?
MathRules skrev:Yngve skrev:MathRules skrev:1/6 har samma värde som 6/36 räkna 1/6 av 36 så får man ju 6 det var så jag tänkte.
Jag förstår ändå inte varför du väljer just 6 och inte till exempel 12, inte heller hur du kommer fram till att din lösning stämmer, så jag kan inte svara på om det går att tänka på det sättet.
Hur långt hänger du med i "min" lösning?
Nej jag hänger inte med i din lösning kan du ge mig ett till exempel med mer hjälp?
Ok Vänta ska försöka tänka på ditt sätt 6/36=0,16 och 15/45=0,33 det är ungefär en fördubbling med 1 rest.
Men när det fördubblas måste det vara exakt? så det är väl fel för att det finns ju en fisk över?
Edit> Har prövat med så många tal nu och 6 var närmast tänkte jag rätt ?
Det finns ingen fisk "över". Det är dina avrundningar som stökar till det.
Först är det 6 guppyer. Det är exakt 6/36 = 1/6 av alla fiskar.
Sedan är det 15 guppyer. Det är exakt 15/45 = 1/3 av alla fiskar.
1/3 är exakt dubbelt så mycket som 1/6.
Rätt svar är alltså 15 guppyer.
Behöver du fortfarande förklaring till sättet att tänka?
Yngve skrev:MathRules skrev:Yngve skrev:MathRules skrev:1/6 har samma värde som 6/36 räkna 1/6 av 36 så får man ju 6 det var så jag tänkte.
Jag förstår ändå inte varför du väljer just 6 och inte till exempel 12, inte heller hur du kommer fram till att din lösning stämmer, så jag kan inte svara på om det går att tänka på det sättet.
Hur långt hänger du med i "min" lösning?
Nej jag hänger inte med i din lösning kan du ge mig ett till exempel med mer hjälp?
Ok Vänta ska försöka tänka på ditt sätt 6/36=0,16 och 15/45=0,33 det är ungefär en fördubbling med 1 rest.
Men när det fördubblas måste det vara exakt? så det är väl fel för att det finns ju en fisk över?
Edit> Har prövat med så många tal nu och 6 var närmast tänkte jag rätt ?
Det finns ingen fisk "över". Det är dina avrundningar som stökar till det.
Först är det 6 guppyer. Det är exakt 6/36 = 1/6 av alla fiskar.
Sedan är det 15 guppyer. Det är exakt 15/45 = 1/3 av alla fiskar.
1/3 är exakt dubbelt så mycket som 1/6.
Rätt svar är alltså 15 guppyer.
Behöver du mer förklaring?
Ja. Men hur vet jag att det är 6?
MathRules skrev:
Ja. Men hur vet jag att det är 6?
Undrar du
1. hur du ska komma på att gissa just talet 6?
eller
2. hur du ska kunna kontrollera om gissningen 6 leder till rätt svar?
Yngve skrev:MathRules skrev:Ja. Men hur vet jag att det är 6?
Undrar du
1. hur du ska komma på att gissa just talet 6?
eller
2. hur du ska kunna kontrollera om gissningen 6 leder till rätt svar?
Båda vore skönt o behärska.
MathRules skrev:
Båda vore skönt o behärska.
Om du förstår min lösningsmetod så behärskar du båda.
Hur långt hänger du med i detta svar?
Svara med den första rad som du inte förstår.
Yngve skrev:Jag tror att metoden "gissa sig fram" är lämplig i årskurs 7.
Från början är det fiskar, varav en del är guppyer.
Nadja köper nya guppyer, då blir antalet fiskar i akvariet .
Samtidigt har andelen guppyer fördubblats.
Frågan gäller hur många guppyer hon har nu?
Nu börjar vi gissa oss fram till rätt lösning.
Första gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mindre än en fördubbling.
Det borde varit färre guppyer från början så att de nya medförde en större ändring.
Andra gissning: Det var guppyer från början.
Det betyder att
- andelen guppyer från början var
- antalet guppyer efter köpet är då
- andelen guppyer efter köpet är då
Från till är mer än en fördubbling.
Det borde alltså varit fler guppyer från början så att de nya medförde en mindre förändring.
Antalet guppyer från början måste alltså vara fler än men färre än .
Kan du fortsätta själv?
Så här ungefär 6/36=166 och 15/45=0,333.
och 0,166 är lika med 332.
alltså det måste ju inte vara exakt jag tog antalet 6 eftersom fick närmast svar på en fördubbling.
MathRules skrev:
Så här ungefär 6/36=166 och 15/45=0,333.
och 0,166 är lika med 332.
alltså det måste ju inte vara exakt jag tog antalet 6 eftersom fick närmast svar på en fördubbling.
Det du skriver stämmer inte alls.
Om du gör avrundningar så måste du skriva tecknet "ungefär lika med", dvs .
Det gäller inte att 6/36 = 0,166. Däremot gäller att 6/360,167.
Det gäller inte att 15/45 = 0,333. Däremot gäller att 15/450,333.
Och jo, det måste vara exakt.
Du kan förenkla 6/36 till 1/6.
Du kan förenkla 15/45 till 1/3.
1/6 är exakt hälften så stort som 1/3.
------
Om du fortfarande vill ha hjälp med att förstå mitt lösningsförslag så bör du besvara mina frågor.
Yngve skrev:MathRules skrev:Så här ungefär 6/36=166 och 15/45=0,333.
och 0,166 är lika med 332.
alltså det måste ju inte vara exakt jag tog antalet 6 eftersom fick närmast svar på en fördubbling.
Det du skriver stämmer inte alls.
Om du gör avrundningar så måste du skriva tecknet "ungefär lika med", dvs .
Det gäller inte att 6/36 = 0,166. Däremot gäller att 6/360,167.
Det gäller inte att 15/45 = 0,333. Däremot gäller att 15/450,333.
Och jo, det måste vara exakt.
Du kan förenkla 6/36 till 1/6.
Du kan förenkla 15/45 till 1/3.
1/6 är exakt hälften så stort som 1/3.
------
Om du fortfarande vill ha hjälp med att förstå mitt lösningsförslag så bör du besvara mina frågor.
Jaså du förenklar bara så mycket som möjligt till bråk .
Men behöver inte mer hjälp det var så mycket enklare när du förklarade med bråk.
MathRules skrev:Jaså du förenklar bara så mycket som möjligt till bråk .
Men behöver inte mer hjälp det var så mycket enklare när du förklarade med bråk.
OK vad bra.
Hoppas att du inte missade att jag gjorde den förenklingen redan tidigare i detta svar.
Yngve skrev:MathRules skrev:Jaså du förenklar bara så mycket som möjligt till bråk .
Men behöver inte mer hjälp det var så mycket enklare när du förklarade med bråk.
OK vad bra.
Hoppas att du inte missade att jag gjorde den förenklingen redan tidigare i detta svar.
Jo tyvärr missade jag det ;c