2 svar
91 visningar
mattejon 30
Postad: 19 mar 2019 01:11 Redigerad: 19 mar 2019 01:13

Prim.Funktion med rotuttryck

Har en integral jag har lite problem med . x2x-x2dx

 

x2x-x2dx =x1-(x-1)2dx // låter x-1=t, dx=dt // t+11-t2dt = dt1-t2 + t1-t2dt , den första blir ju arcsin t med std prim, men den andra lyckas jag inte lösa ut. Tycker alltid sånna yttryck är krångliga när det blir massa inre funktioner att hålla koll på. Är jag rätt ute, och finns det nåt "enkelt knep" man kan tänka på i den "andra"

SeriousCephalopod 2696
Postad: 19 mar 2019 02:20 Redigerad: 19 mar 2019 02:27

Täljaren i andra ÄR inre derivatan till rotenuruttrycket. Primitiven är bara 

-1-t2-\sqrt{1-t^2}

Man kan alltid vara uppmärksam på om täljaren i en integrand är proportionell mot nämnarens inre derivata i vilket fall den i princip kan ignoreras och endast primitiv till nämnarens yttre behövs.

Gör man variabelbyte på hela uttrycket under roten bara som ett naivt försök så faller detta ut också så man kan alltid skissa den typen av variabelbyten och se vad som händer

mattejon 30
Postad: 19 mar 2019 11:12

Tack för en mycket bra förklaring.

Tänkte på en annan sak , funkar det alltid att göra variabelbyte på den "andra" , typ

t1-t2dt  // s=1-t2 , dt = -1/2 ds //  -12dss = -12  s12 =-s , så att jag tar bort risken att jag missar nåt ?

Svara
Close