14 svar
341 visningar
Wilar 172 – Fd. Medlem
Postad: 15 aug 2019 13:04 Redigerad: 15 aug 2019 13:39

Precession

Håller på med uppgift 4 på den här tentan (lösningsförslag), men får ett lite annat svar än facit. Jag kollar nämligen på tröghets- och rörelsemängdsmoment med avseende på tyngdpunkten, medan facit parallellförflyttar till origo (där spetsen är). Eftersom snurrar inte accelererar uppåt tänkte jag att normalkraften N = mg, men då min metod inte ger rätt svar verkar det inte stämma. Varför, isf? Speciellt märkligt eftersom mitt tankesätt gav rätt svar på uppgift 6 på den här tentan.

 

Edit: Eller, hm, finns det (i den första uppgiften) friktionskrafter som ger upphov till moment också?

SaintVenant 3956
Postad: 15 aug 2019 20:22

Mycket riktigt borde det bero på att friktionskrafter existerar vid O. Jag är lite fundersam på bakgrunden till varför man kan ha ett glatt plan för den med pinnar men inte den med en skiva. Jag har tänkt en stund men inte riktigt kommit fram till något direkt. 

SaintVenant 3956
Postad: 15 aug 2019 20:24 Redigerad: 15 aug 2019 20:26
Ebola skrev:

Mycket riktigt borde det bero på att friktionskrafter existerar vid O. Jag är lite fundersam på bakgrunden till varför man kan ha ett glatt plan för den med pinnar men inte den med en skiva. Jag har tänkt en stund men inte riktigt kommit fram till något direkt. 

När du löste den andra uppgiften, fick du alltså fram att änden i kontakt med bordet inte rör sig? Det är nämligen mycket märkligt att uppnå precession på det viset utan friktionskrafter. Jag tänker direkt utan att räkna på det att änden i kontakt med bordet rör sig cirkulärt i bordets plan.

Wilar 172 – Fd. Medlem
Postad: 15 aug 2019 21:05 Redigerad: 15 aug 2019 21:06
Ebola skrev:
Ebola skrev:

Mycket riktigt borde det bero på att friktionskrafter existerar vid O. Jag är lite fundersam på bakgrunden till varför man kan ha ett glatt plan för den med pinnar men inte den med en skiva. Jag har tänkt en stund men inte riktigt kommit fram till något direkt. 

När du löste den andra uppgiften, fick du alltså fram att änden i kontakt med bordet inte rör sig? Det är nämligen mycket märkligt att uppnå precession på det viset utan friktionskrafter. Jag tänker direkt utan att räkna på det att änden i kontakt med bordet rör sig cirkulärt i bordets plan.

Det enda jag fick fram var sambandet mellan precessionshastigheten och spinnhastigheten. Något som jag dock inte förstår helt på den uppgiften (den från oktober 2016 alltså), är hur man får fram tröghetsmomenten. Hur ska man tänka när det är 3 sammansatta pinnar?

SaintVenant 3956
Postad: 16 aug 2019 03:14 Redigerad: 16 aug 2019 03:16

Jag skulle bara sätta ett koordinatsystem i masscentrum med z-axeln längs med den långa pinnen och x- respektive y-axeln längs med var sin kortare pinne. Detta ger våra tröghetsmoment som:

Ixx=Iyy=112ρ(2l)3+112ρl3=34ρl3Izz=2(112ρl3)=16ρl3

Vårt koordinatsystem är ett huvudaxelsystem vilket betyder att deviationsmomenten är lika med noll:

Ixy=Ixz=Iyz=0

Tröghetstensorn blir således:

I=34ρl300034ρl300016ρl3 

Tröghetsmoment för en pinne som roterar kring en axel i sin mittpunkt kan du se här:

List of moments of inertia

Wilar 172 – Fd. Medlem
Postad: 16 aug 2019 11:10
Ebola skrev:

Jag skulle bara sätta ett koordinatsystem i masscentrum med z-axeln längs med den långa pinnen och x- respektive y-axeln längs med var sin kortare pinne. Detta ger våra tröghetsmoment som:

Ixx=Iyy=112ρ(2l)3+112ρl3=34ρl3Izz=2(112ρl3)=16ρl3

Vårt koordinatsystem är ett huvudaxelsystem vilket betyder att deviationsmomenten är lika med noll:

Ixy=Ixz=Iyz=0

Tröghetstensorn blir således:

I=34ρl300034ρl300016ρl3 

Tröghetsmoment för en pinne som roterar kring en axel i sin mittpunkt kan du se här:

List of moments of inertia

Ah, då förstår jag. Men detta är då med avseende på tyngdpunkten? Om man parallellförflyttar till spetsen (kalla den O) blir det väl IO=ρl319/400019/40001/6, eller hur? Eftersom 34ρl3+(4ρl)l2=194ρl3. Eftersom det inte finns några friktionskrafter och N = mg blir momentet det samma med avseende på O som med avseende på tyngdpunkten. Men det blir det ju uppenbarligen inte om man använder MO=HOt+Ω×HO (eftersom man får olika rörelsemängdsmoment beroende på vilken punkt man kollar på). Hur ligger det till egentligen? Förstår att man rimligtvis borde kolla på O i den uppgiften där det fanns friktion, men det finns det ju inte här...

SaintVenant 3956
Postad: 16 aug 2019 11:40 Redigerad: 16 aug 2019 11:44

Om du har origo vid spetsen är inte längre deviationsmomenten för z-led noll så tröghetstensorn blir annorlunda. Dessa tröghetsprodukter bidrar till termer av rörelsemängdsmoment. Kan du räkna ut vad deviationsmomenten blir?

Edit: Vid närmare eftertanke blir de kanske noll eftersom det är en toppsymmetrisk kropp. Jag har inte tid just nu men återkommer senare angående din fundering.

Wilar 172 – Fd. Medlem
Postad: 16 aug 2019 12:23
Ebola skrev:

Om du har origo vid spetsen är inte längre deviationsmomenten för z-led noll så tröghetstensorn blir annorlunda. Dessa tröghetsprodukter bidrar till termer av rörelsemängdsmoment. Kan du räkna ut vad deviationsmomenten blir?

Edit: Vid närmare eftertanke blir de kanske noll eftersom det är en toppsymmetrisk kropp. Jag har inte tid just nu men återkommer senare angående din fundering.

Ja, eftersom man gör en parallellförflyttning längs z-axeln använder man väl bara Steiners sats på Ixxoch Iyy?

SaintVenant 3956
Postad: 16 aug 2019 18:30 Redigerad: 16 aug 2019 19:44

Matte357 skrev:
Ja, eftersom man gör en parallellförflyttning längs z-axeln använder man väl bara Steiners sats på Ixx och Iyy?

Ja, precis. 

Avsaknad av friktionskrafter bör innebära att punkten O roterar i en cirkulär rörelse i planet. Detta gör mig fundersam på om momentekvationen du nämner blir likadan som i masscentrum i något annat koordinatsystem än möjligtvis ett som följer med rörelsen. Det är samma som diskussionen vi hade i den andra uppgiften.

Wilar 172 – Fd. Medlem
Postad: 16 aug 2019 23:06
Ebola skrev:

Matte357 skrev:
Ja, eftersom man gör en parallellförflyttning längs z-axeln använder man väl bara Steiners sats på Ixx och Iyy?

Ja, precis. 

Avsaknad av friktionskrafter bör innebära att punkten O roterar i en cirkulär rörelse i planet. Detta gör mig fundersam på om momentekvationen du nämner blir likadan som i masscentrum i något annat koordinatsystem än möjligtvis ett som följer med rörelsen. Det är samma som diskussionen vi hade i den andra uppgiften.

Hm, ok. Förstår inte helt, men kan alltså inte kolla på moment som vanligt om punkten rör sig då? Och betyder det att tyngdpunkten då är fix?

SaintVenant 3956
Postad: 17 aug 2019 01:13 Redigerad: 17 aug 2019 01:18
Matte357 skrev:

Hm, ok. Förstår inte helt, men kan alltså inte kolla på moment som vanligt om punkten rör sig då? Och betyder det att tyngdpunkten då är fix?

Man kan absolut kolla på moment men frågan är om den blir densamma som i tyngdpunkten. Det var nämligen något du påstod i inlägget jag kommenterade. Jag tror att masscentrum inte rör sig. Om man exempelvis beskriver rörelsen av den långa pinnen målar den upp en kägla likt nedan:

Wilar 172 – Fd. Medlem
Postad: 17 aug 2019 10:55 Redigerad: 17 aug 2019 11:01
Ebola skrev:
Matte357 skrev:

Hm, ok. Förstår inte helt, men kan alltså inte kolla på moment som vanligt om punkten rör sig då? Och betyder det att tyngdpunkten då är fix?

Man kan absolut kolla på moment men frågan är om den blir densamma som i tyngdpunkten. Det var nämligen något du påstod i inlägget jag kommenterade. Jag tror att masscentrum inte rör sig. Om man exempelvis beskriver rörelsen av den långa pinnen målar den upp en kägla likt nedan:

Ah, ok, så det måste finnas någon kraft i kontaktpunkten riktad in mot mitten (för att bibehålla cirkelrörelsen)? Och den borde väl vara typ F=mlsinθΩ2?

 

Edit: Fast samma kraft, med motsatt tecken, borde ju isf finnas på toppen (och därmed borde de momenten map tyngdpunkten ta ut varandra?)

SaintVenant 3956
Postad: 17 aug 2019 11:36 Redigerad: 17 aug 2019 11:46

Hm, jag tror att eftersom massan är kontinuerlig i stavarna så finns det alltid infinitesimala punkter som motverkar varandra vilket gör att imbalans i rotationsförloppet inte orsakas av dylika excenterkrafter. Framförallt har vi för systemet att alla ingående kroppar har tyngdpunkt på rotationsaxeln.

Jag har försökt fundera ut olika sätt att formulera systemet på men faktum kvarstår att momentekvationen är identisk vilket betyder att derivatan av rörelsemängdsmomentet måste vara identiskt. Frågan är bara hur tröghetstensorn och vinkelhastighetsvektorn ser ut. Det är deras formulering som blir den knepiga.

Edit: Testa att räkna med excenterkraften och se vad du kommer fram till. Den elimineras inte kring O vilket ger en ny momentekvation:

MO=4ρgl2sinθ+8ρl3cosθsinθΩ2

Wilar 172 – Fd. Medlem
Postad: 17 aug 2019 12:20
Ebola skrev:

Hm, jag tror att eftersom massan är kontinuerlig i stavarna så finns det alltid infinitesimala punkter som motverkar varandra vilket gör att imbalans i rotationsförloppet inte orsakas av dylika excenterkrafter. Framförallt har vi för systemet att alla ingående kroppar har tyngdpunkt på rotationsaxeln.

Jag har försökt fundera ut olika sätt att formulera systemet på men faktum kvarstår att momentekvationen är identisk vilket betyder att derivatan av rörelsemängdsmomentet måste vara identiskt. Frågan är bara hur tröghetstensorn och vinkelhastighetsvektorn ser ut. Det är deras formulering som blir den knepiga.

Edit: Testa att räkna med excenterkraften och se vad du kommer fram till. Den elimineras inte kring O vilket ger en ny momentekvation:

MO=4ρgl2sinθ+8ρl3cosθsinθΩ2

Vad menas med excenterkrafter? Tror inte vi har läst om det innan...

SaintVenant 3956
Postad: 17 aug 2019 20:06

Excenterkraft i detta fall är en form av pseudokraft eller centrifugalkraft som följer av att koordinatsystemet roterar. Om vi fixerar koordinatsystemet globalt måste vi införa tröghetskrafter av typen du nämnde eftersom vi inte får ett bidrag från Eulers ekvation. Excenterkraften ramlar nämligen ut från kryssproduktens mellan rotationsvektorn av koordinatsystemet och rörelsemängdsmomentvektorn. Jag återkommer imorgon med klarifiering.

Svara
Close