7 svar
44 visningar
Evelina06 11
Postad: 10 okt 18:12

Polynom i faktorform

Hej jag sitter nu och pluggar matte när jag stöter på en uppgift där man ska skriva polynomet p(x) = x^3 - x i faktorform. Men när jag tänkande ut det genom att faktorisera ut x så jag fick x(x^2 - 1) så jag kunde använda mig av pq-formeln för att ta fram x-rötterna (eller vad man vill kalla det), för att sen skriva in x-rötterna i faktorform, och fick så fram svaret p(x) = x((x-1)(x-0)), men när jag kollade facit stod det p(x) = x((x+1)(x-1)

Vad har jag gjort för fel eller vad är lösningen?

Tack för hjälp i förhand!

Gustor 333
Postad: 10 okt 18:16

x = 0 är inte en lösning till ekvationen x^2 - 1 = 0. Du har nog gjort något fel när du använt pq-formeln.

Du kan istället använda konjugatregeln för att faktorisera x^2 - 1, så slipper du lösa en andragradsekvation.

Evelina06 11
Postad: 10 okt 18:20

Ok tack ska testa det!

Evelina06 11
Postad: 10 okt 18:45

Men om man använder sig av pq-formen vilka p- och q-värden är det man ska sätta in för tror det är där det kan ha blivit fel i min uträkning?

Gustor 333
Postad: 10 okt 18:50

x^2 + px + q = 0

x^2 - 1 = 0

Så p = 0, q = - 1. Vad får du om du stoppar in de värdena?

Evelina06 11
Postad: 10 okt 18:59

När jag stoppade in dessa värden så fick jag fram rätt värden, alltså x = 1 och x = -1. Det jag gjorde fel vara att jag tänkte att det var p-värdet som var -1 och att q-värdet var 0 så förväxlade dem. Tack för hjälpen!

Yngve 40277 – Livehjälpare
Postad: 10 okt 20:31

Ett jättebra tips är att ställa upp det precis så som Gustor gjorde i svar #5, med "pq-mallen" först och själva ekvationen direkt under.

Då blir det enklare att se vad p och q är.

Evelina06 11
Postad: 10 okt 20:33

Ok tack för tipset

Svara
Close